Computing Prüfer codes efficiently in parallel

A Prüfer code of a labeled free tree with n nodes is a sequence of length n−2 constructed by the following sequential process: for i ranging from 1 to n−2 insert the label of the neighbor of the smallest remaining leaf into the ith position of the sequence, and then delete the leaf. Prüfer codes pro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Applied Mathematics Ročník 102; číslo 3; s. 205 - 222
Hlavní autori: Greenlaw, Raymond, Petreschi, Rossella
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Elsevier B.V 15.06.2000
Amsterdam Elsevier
New York, NY
Predmet:
ISSN:0166-218X, 1872-6771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A Prüfer code of a labeled free tree with n nodes is a sequence of length n−2 constructed by the following sequential process: for i ranging from 1 to n−2 insert the label of the neighbor of the smallest remaining leaf into the ith position of the sequence, and then delete the leaf. Prüfer codes provide an alternative to the usual representation of trees. We present an optimal O( log n) time, n/ log n processor EREW-PRAM algorithm for determining the Prüfer code of an n-node labeled chain and an O( log n) time, n processor EREW-PRAM algorithm for constructing the Prüfer code of an n-node labeled free tree. This resolves an open question posed by Wang et al. (IEEE Trans. Parallel Distributed Systems 8 (12) (1997) 1236–1240).
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(99)00221-8