Sets of approximating functions with finite Vapnik–Chervonenkis dimension for nearest-neighbors algorithms

► Reformulation of k-NN algorithm to alpha-NN ∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN ∗, with finite capacity. ► Pointing out degrees of freedom for these sets. ► Proving theorems about dichotomies and VC-dimension for the proposed sets. According to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters Jg. 32; H. 14; S. 1882 - 1893
Hauptverfasser: KLCSK, P, KORZEN, M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 15.10.2011
Elsevier
Schlagworte:
ISSN:0167-8655, 1872-7344
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ► Reformulation of k-NN algorithm to alpha-NN ∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN ∗, with finite capacity. ► Pointing out degrees of freedom for these sets. ► Proving theorems about dichotomies and VC-dimension for the proposed sets. According to a certain misconception sometimes met in the literature: for the nearest-neighbors algorithms there is no fixed hypothesis class of limited Vapnik–Chervonenkis dimension. In the paper a simple reformulation (not a modification) of the nearest-neighbors algorithm is shown where instead of a natural number k, a percentage α ∈ (0, 1) of nearest neighbors is used. Owing to this reformulation one can construct sets of approximating functions, which we prove to have finite VC dimension. In a special (but practical) case this dimension is equal to ⌊2/ α⌋. It is also then possible to form a sequence of sets of functions with increasing VC dimension, and to perform complexity selection via cross-validation or similarly to the structural risk minimization framework. Results of such experiments are also presented.
AbstractList ► Reformulation of k-NN algorithm to alpha-NN ∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN ∗, with finite capacity. ► Pointing out degrees of freedom for these sets. ► Proving theorems about dichotomies and VC-dimension for the proposed sets. According to a certain misconception sometimes met in the literature: for the nearest-neighbors algorithms there is no fixed hypothesis class of limited Vapnik–Chervonenkis dimension. In the paper a simple reformulation (not a modification) of the nearest-neighbors algorithm is shown where instead of a natural number k, a percentage α ∈ (0, 1) of nearest neighbors is used. Owing to this reformulation one can construct sets of approximating functions, which we prove to have finite VC dimension. In a special (but practical) case this dimension is equal to ⌊2/ α⌋. It is also then possible to form a sequence of sets of functions with increasing VC dimension, and to perform complexity selection via cross-validation or similarly to the structural risk minimization framework. Results of such experiments are also presented.
Author Korzeń, M.
Klęsk, P.
Author_xml – sequence: 1
  givenname: P
  surname: KLCSK
  fullname: KLCSK, P
  organization: Department of Methods of Artificial Intelligence and Applied Mathematics, Westpomeranian University of Technology, Szczecin, Poland
– sequence: 2
  givenname: M
  surname: KORZEN
  fullname: KORZEN, M
  organization: Department of Methods of Artificial Intelligence and Applied Mathematics, Westpomeranian University of Technology, Szczecin, Poland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24627128$$DView record in Pascal Francis
BookMark eNqFkL9uFDEQhy0UJC4Jb0DhhnKX8Xq9u0eBhE78iRSJgkBrzXrHd77s2SvbhNDxDrxhngSfDhoKMs003--nme-cnfngibEXAmoBonu1rxfMkUzdgBA19DWI5glbiaFvql627RlbFayvhk6pZ-w8pT0AdHI9rNj8mXLiwXJclhju3QGz81tuv3mTXfCJf3d5x63zLhP_iot3tw8_f212FO_KDf7WJT65A_lUYG5D5J4wUsqVJ7fdjSEmjvM2xNJySJfsqcU50fM_-4J9ef_uZvOxuv704Wrz9royUna5QkmwnrpBwrhW1I4AqlGtVK0iYyZohmHqLfRqKLMesUOQ1gIhohqBRisv2MtT74LJ4GwjeuOSXmJ5L_7QTds1vWiGwr0-cSaGlCJZbVzG4985opu1AH30q_f65Fcf_WrodfFbwu0_4b_9j8TenGJUBNw5ijoZR97Q5Aqa9RTc_wt-A8oLnSc
CODEN PRLEDG
CitedBy_id crossref_primary_10_1002_widm_1252
crossref_primary_10_1016_j_neucom_2015_11_100
crossref_primary_10_1016_j_inffus_2025_102996
crossref_primary_10_1016_j_neucom_2023_126227
crossref_primary_10_1016_j_neucom_2018_10_087
crossref_primary_10_1016_j_neucom_2025_130521
crossref_primary_10_1016_j_neunet_2016_07_002
crossref_primary_10_1145_2836165
crossref_primary_10_1016_j_neucom_2022_07_010
crossref_primary_10_1109_TCYB_2014_2361857
crossref_primary_10_3390_s22072704
Cites_doi 10.1126/science.290.5500.2323
10.1109/TIT.1970.1054466
10.1109/5.58325
10.1145/355744.355745
10.1145/238061.238070
10.1145/361002.361007
10.1162/089976699300016304
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patrec.2011.07.012
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1872-7344
EndPage 1893
ExternalDocumentID 24627128
10_1016_j_patrec_2011_07_012
S016786551100225X
GrantInformation_xml – fundername: Polish Government, Ministry of Science and Higher Education
  grantid: N N516 424938
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-a3e09d6830b95e4b0052543545eccd0288d7f07588889ba6a03ff0eaaa5b0ebf3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296547400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Mon Jul 21 09:15:29 EDT 2025
Sat Nov 29 08:09:16 EST 2025
Tue Nov 18 22:08:46 EST 2025
Fri Feb 23 02:26:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Statistical learning theory
k-Nearest neighbors
Vapnik–Chervonenkis dimension
Generalization
Complexity selection
Structural risk minimization
Learning
Nearest neighbour
Vapnik-Chervonenkis dimension
Cross validation
Algorithm
Signal analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-a3e09d6830b95e4b0052543545eccd0288d7f07588889ba6a03ff0eaaa5b0ebf3
PageCount 12
ParticipantIDs pascalfrancis_primary_24627128
crossref_citationtrail_10_1016_j_patrec_2011_07_012
crossref_primary_10_1016_j_patrec_2011_07_012
elsevier_sciencedirect_doi_10_1016_j_patrec_2011_07_012
PublicationCentury 2000
PublicationDate 2011-10-15
PublicationDateYYYYMMDD 2011-10-15
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Cherkassky, Mulier (b0025) 1998
Devroye, Gyorfi, Lugosi (b0030) 1996
Holden, S., 1996. Cross-validation and the PAC learning model. Technical Report. Research Note, RN/96/64. Department of CS, University College, London.
Friedman (b0040) 2009
Simard, LeCun, Denker, Victorri (b0105) 2000; vol. 11
Friedman (b0035) 1977; 3
Vincent, Bengio (b0125) 2001
Anthony, Bartlett (b0005) 2009
Bentley (b0020) 1975; 18
Aurenhammer, Klein (b0010) 2000
Vapnik (b0115) 1995
Jahne (b0065) 2004
Vapnik (b0110) 1995
Shawe-Taylor, J., et al., 1996. A framework for structural risk minimization. In: COLT, ACM Press, pp. 68–76, ISBN 0-89791-811-8. Available from
Bartlett, Mendelson (b0015) 2002; 3
Graham, Knuth, Patashik (b0045) 2002
Roweis, Saul (b0095) 2000; 290
Kohonen (b0075) 1990; 78
Hellman, Raviv (b0050) 1970; IT-16
Hjorth (b0055) 1994
.
Kohonen, T., 1992. Clustering, taxonomy, and topological maps of patterns. In: Proc. 6th Internat. Conf. on Pattern Recognition, Munich, Germany, pp. 114–128.
Vapnik, V., Chervonenkis, A., 1989. The necessary and sufficient conditions for the consistency of the method of empirical risk minimization. In: Yearbook of the Academy of Sciences of the USSR on Recognition, Classification and Forecasting, vol. 2, pp. 217–249.
Korzeń, Klęsk (b0085) 2008; vol. 5097
Kearns, Ron (b0070) 1999; 11
Lloyd, S.P., 1957. Least squares quantization in PCM’s. Technical Report. Bell Telephone Laboratories, Murray Hill, New Jersey.
Anthony (10.1016/j.patrec.2011.07.012_b0005) 2009
Aurenhammer (10.1016/j.patrec.2011.07.012_b0010) 2000
Hjorth (10.1016/j.patrec.2011.07.012_b0055) 1994
10.1016/j.patrec.2011.07.012_b0120
Kohonen (10.1016/j.patrec.2011.07.012_b0075) 1990; 78
10.1016/j.patrec.2011.07.012_b0100
10.1016/j.patrec.2011.07.012_b0060
Roweis (10.1016/j.patrec.2011.07.012_b0095) 2000; 290
Bentley (10.1016/j.patrec.2011.07.012_b0020) 1975; 18
10.1016/j.patrec.2011.07.012_b0080
Korzeń (10.1016/j.patrec.2011.07.012_b0085) 2008; vol. 5097
Bartlett (10.1016/j.patrec.2011.07.012_b0015) 2002; 3
Cherkassky (10.1016/j.patrec.2011.07.012_b0025) 1998
Vincent (10.1016/j.patrec.2011.07.012_b0125) 2001
Hellman (10.1016/j.patrec.2011.07.012_b0050) 1970; IT-16
Vapnik (10.1016/j.patrec.2011.07.012_b0115) 1995
Friedman (10.1016/j.patrec.2011.07.012_b0035) 1977; 3
10.1016/j.patrec.2011.07.012_b0090
Friedman (10.1016/j.patrec.2011.07.012_b0040) 2009
Jahne (10.1016/j.patrec.2011.07.012_b0065) 2004
Devroye (10.1016/j.patrec.2011.07.012_b0030) 1996
Kearns (10.1016/j.patrec.2011.07.012_b0070) 1999; 11
Vapnik (10.1016/j.patrec.2011.07.012_b0110) 1995
Graham (10.1016/j.patrec.2011.07.012_b0045) 2002
Simard (10.1016/j.patrec.2011.07.012_b0105) 2000; vol. 11
References_xml – volume: 3
  start-page: 209
  year: 1977
  end-page: 226
  ident: b0035
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Trans. Math. Softw.
– reference: Vapnik, V., Chervonenkis, A., 1989. The necessary and sufficient conditions for the consistency of the method of empirical risk minimization. In: Yearbook of the Academy of Sciences of the USSR on Recognition, Classification and Forecasting, vol. 2, pp. 217–249.
– volume: IT-16
  start-page: 368
  year: 1970
  end-page: 372
  ident: b0050
  article-title: Probability of error, equivocation and the Chernoff bound
  publication-title: IEEE Trans. Inform. Theor.
– year: 2009
  ident: b0005
  article-title: Neural Network Learning: Theoretical Foundations
– year: 1996
  ident: b0030
  article-title: A Probabilistic Theory of Pattern Recognition
– year: 2009
  ident: b0040
  article-title: The Elements of Statistical Learning
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: b0095
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– year: 2000
  ident: b0010
  article-title: Voronoi Diagrams
– year: 1994
  ident: b0055
  article-title: Computer Intensive Statistical Methods Validation, Model Selection, and Bootstrap
– volume: 11
  start-page: 1427
  year: 1999
  end-page: 1453
  ident: b0070
  article-title: Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
  publication-title: Neural Comput.
– reference: Lloyd, S.P., 1957. Least squares quantization in PCM’s. Technical Report. Bell Telephone Laboratories, Murray Hill, New Jersey.
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1479
  ident: b0075
  article-title: The self-organizing map
  publication-title: Proc. IEEE
– volume: vol. 11
  year: 2000
  ident: b0105
  article-title: Transformation invariance in pattern recognition: Tangent distance and propagation
  publication-title: International Journal of Imaging Systems and Technology
– year: 1995
  ident: b0110
  article-title: The Nature of Statistical Learning Theory
– start-page: 985
  year: 2001
  end-page: 992
  ident: b0125
  article-title: K-local hyperplane and convex distance nearest neighbors algorithms
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: vol. 5097
  start-page: 597
  year: 2008
  end-page: 608
  ident: b0085
  article-title: Maximal margin estimation with perceptron-like algorithm
  publication-title: Lecture Notes in Computer Science
– year: 1998
  ident: b0025
  article-title: Learning From Data
  publication-title: Adaptive and Learning Systems for Signal Processing, Communications and Control
– volume: 18
  year: 1975
  ident: b0020
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
– reference: Holden, S., 1996. Cross-validation and the PAC learning model. Technical Report. Research Note, RN/96/64. Department of CS, University College, London.
– reference: >.
– reference: Kohonen, T., 1992. Clustering, taxonomy, and topological maps of patterns. In: Proc. 6th Internat. Conf. on Pattern Recognition, Munich, Germany, pp. 114–128.
– year: 1995
  ident: b0115
  article-title: Statistical Learning Theory: Inference from Small Samples
– year: 2004
  ident: b0065
  article-title: Practical Handbook on Image Processing for Scientific and Technical Application
– year: 2002
  ident: b0045
  article-title: Concrete Mathematics. A foundation for Computer Science
– volume: 3
  start-page: 463
  year: 2002
  end-page: 482
  ident: b0015
  article-title: Rademacher and gaussian complexities: risk bounds and structural results
  publication-title: J. Mach. Learn. Res.
– reference: Shawe-Taylor, J., et al., 1996. A framework for structural risk minimization. In: COLT, ACM Press, pp. 68–76, ISBN 0-89791-811-8. Available from: <
– year: 1994
  ident: 10.1016/j.patrec.2011.07.012_b0055
– year: 1995
  ident: 10.1016/j.patrec.2011.07.012_b0115
– volume: 290
  start-page: 2323
  year: 2000
  ident: 10.1016/j.patrec.2011.07.012_b0095
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– year: 1996
  ident: 10.1016/j.patrec.2011.07.012_b0030
– volume: IT-16
  start-page: 368
  year: 1970
  ident: 10.1016/j.patrec.2011.07.012_b0050
  article-title: Probability of error, equivocation and the Chernoff bound
  publication-title: IEEE Trans. Inform. Theor.
  doi: 10.1109/TIT.1970.1054466
– year: 2009
  ident: 10.1016/j.patrec.2011.07.012_b0005
– year: 2002
  ident: 10.1016/j.patrec.2011.07.012_b0045
– volume: vol. 11
  year: 2000
  ident: 10.1016/j.patrec.2011.07.012_b0105
  article-title: Transformation invariance in pattern recognition: Tangent distance and propagation
– year: 1995
  ident: 10.1016/j.patrec.2011.07.012_b0110
– ident: 10.1016/j.patrec.2011.07.012_b0060
– volume: 78
  start-page: 1464
  year: 1990
  ident: 10.1016/j.patrec.2011.07.012_b0075
  article-title: The self-organizing map
  publication-title: Proc. IEEE
  doi: 10.1109/5.58325
– volume: 3
  start-page: 463
  year: 2002
  ident: 10.1016/j.patrec.2011.07.012_b0015
  article-title: Rademacher and gaussian complexities: risk bounds and structural results
  publication-title: J. Mach. Learn. Res.
– year: 2009
  ident: 10.1016/j.patrec.2011.07.012_b0040
– volume: 3
  start-page: 209
  year: 1977
  ident: 10.1016/j.patrec.2011.07.012_b0035
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355744.355745
– year: 2004
  ident: 10.1016/j.patrec.2011.07.012_b0065
– year: 2000
  ident: 10.1016/j.patrec.2011.07.012_b0010
– ident: 10.1016/j.patrec.2011.07.012_b0100
  doi: 10.1145/238061.238070
– volume: vol. 5097
  start-page: 597
  year: 2008
  ident: 10.1016/j.patrec.2011.07.012_b0085
  article-title: Maximal margin estimation with perceptron-like algorithm
– ident: 10.1016/j.patrec.2011.07.012_b0090
– volume: 18
  year: 1975
  ident: 10.1016/j.patrec.2011.07.012_b0020
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
  doi: 10.1145/361002.361007
– year: 1998
  ident: 10.1016/j.patrec.2011.07.012_b0025
  article-title: Learning From Data
– ident: 10.1016/j.patrec.2011.07.012_b0120
– start-page: 985
  year: 2001
  ident: 10.1016/j.patrec.2011.07.012_b0125
  article-title: K-local hyperplane and convex distance nearest neighbors algorithms
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 11
  start-page: 1427
  year: 1999
  ident: 10.1016/j.patrec.2011.07.012_b0070
  article-title: Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016304
– ident: 10.1016/j.patrec.2011.07.012_b0080
SSID ssj0006398
Score 2.0851398
Snippet ► Reformulation of k-NN algorithm to alpha-NN ∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN ∗, with finite capacity. ►...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1882
SubjectTerms Applied sciences
Complexity selection
Exact sciences and technology
Generalization
Information, signal and communications theory
k-Nearest neighbors
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Statistical learning theory
Structural risk minimization
Telecommunications and information theory
Vapnik–Chervonenkis dimension
Title Sets of approximating functions with finite Vapnik–Chervonenkis dimension for nearest-neighbors algorithms
URI https://dx.doi.org/10.1016/j.patrec.2011.07.012
Volume 32
WOSCitedRecordID wos000296547400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLeqjgMIDRggNmDygZ2mVGmdxM5xqoaAw1SJgXqLHMdG3aK0arqq4jRpH2HfcJ-E539pSgVjB3qIqqh23b6f3_vl-f1B6AONFAPDmASxyHkQ0SIJOBiaAMhyHqYFWHiRm2YT9OyMjcfpqNO58bkwy5JWFVut0tl_FTXcA2Hr1NkHiLuZFG7AexA6XEHscP0nwX-VNjzDVAtfTTQj1cGSYL9s0JvxvKqJ5prH3_msmlz6gAcyBAEup5WsgFUeF7ruf-0jEStd67ZeBJV2pea6Qw8vf0znMJcrd-4I7sjU69Q5Mi4wCcaXJmVofWpk-Gya1kYRj3rN_en8pzwaxkcsMm7aXtsjYUPibE6md1KC8tUJr20tu_ZiXvm8Uacz-8y2H3L2t89sy8Qt3W7dDBc9fUgghau-SnuhC8PeKKX9m4lrAg99TNtFZmfJ9CxZSLNQd6reGdA4ZV20c_L5dPylMehA4pgvEa9_ls_ANGGC26v5E8N5OuM17DtlG6a0WMz5c7TrHj_wiYXNC9SR1R565lt7YKfp99CTVp3Kl6jUmMJThTcwhRtMYY0pbDGFLaburm_baMINmjCgCW-hCa_R9Ap9-3h6PvwUuDYdgSAkWQScSNjVCSNhnsYyMicNMbDwKAb1UAB_ZQVVwEwZvNKcJzwkSoWScx7nocwVeY26FazmDcKpFPAIwSnvUxHlFMgqUX1FEhGFCh4FxD4i_q_NhKthr1uplNnfBLuPgmbUzNZwuefz1EstczzU8ssMoHjPyMMNITdfN4iSAQUqePDApbxFj9c77B3qLuZX8j16JJaLST0_dED9BS2cubg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sets+of+approximating+functions+with+finite+Vapnik%E2%80%93Chervonenkis+dimension+for+nearest-neighbors+algorithms&rft.jtitle=Pattern+recognition+letters&rft.au=Kl%C4%99sk%2C+P.&rft.au=Korze%C5%84%2C+M.&rft.date=2011-10-15&rft.issn=0167-8655&rft.volume=32&rft.issue=14&rft.spage=1882&rft.epage=1893&rft_id=info:doi/10.1016%2Fj.patrec.2011.07.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2011_07_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon