Sets of approximating functions with finite Vapnik–Chervonenkis dimension for nearest-neighbors algorithms
► Reformulation of k-NN algorithm to alpha-NN ∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN ∗, with finite capacity. ► Pointing out degrees of freedom for these sets. ► Proving theorems about dichotomies and VC-dimension for the proposed sets. According to a...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition letters Jg. 32; H. 14; S. 1882 - 1893 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
15.10.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0167-8655, 1872-7344 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | ► Reformulation of
k-NN algorithm to alpha-NN
∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN
∗, with finite capacity. ► Pointing out degrees of freedom for these sets. ► Proving theorems about dichotomies and VC-dimension for the proposed sets.
According to a certain misconception sometimes met in the literature: for the nearest-neighbors algorithms there is no fixed hypothesis class of limited Vapnik–Chervonenkis dimension.
In the paper a simple reformulation (not a modification) of the nearest-neighbors algorithm is shown where instead of a natural number
k, a percentage
α
∈
(0,
1) of nearest neighbors is used. Owing to this reformulation one can construct
sets of approximating functions, which we prove to have
finite VC dimension. In a special (but practical) case this dimension is equal to ⌊2/
α⌋. It is also then possible to form a sequence of sets of functions with increasing VC dimension, and to perform complexity selection via cross-validation or similarly to the structural risk minimization framework. Results of such experiments are also presented. |
|---|---|
| AbstractList | ► Reformulation of
k-NN algorithm to alpha-NN
∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN
∗, with finite capacity. ► Pointing out degrees of freedom for these sets. ► Proving theorems about dichotomies and VC-dimension for the proposed sets.
According to a certain misconception sometimes met in the literature: for the nearest-neighbors algorithms there is no fixed hypothesis class of limited Vapnik–Chervonenkis dimension.
In the paper a simple reformulation (not a modification) of the nearest-neighbors algorithm is shown where instead of a natural number
k, a percentage
α
∈
(0,
1) of nearest neighbors is used. Owing to this reformulation one can construct
sets of approximating functions, which we prove to have
finite VC dimension. In a special (but practical) case this dimension is equal to ⌊2/
α⌋. It is also then possible to form a sequence of sets of functions with increasing VC dimension, and to perform complexity selection via cross-validation or similarly to the structural risk minimization framework. Results of such experiments are also presented. |
| Author | Korzeń, M. Klęsk, P. |
| Author_xml | – sequence: 1 givenname: P surname: KLCSK fullname: KLCSK, P organization: Department of Methods of Artificial Intelligence and Applied Mathematics, Westpomeranian University of Technology, Szczecin, Poland – sequence: 2 givenname: M surname: KORZEN fullname: KORZEN, M organization: Department of Methods of Artificial Intelligence and Applied Mathematics, Westpomeranian University of Technology, Szczecin, Poland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24627128$$DView record in Pascal Francis |
| BookMark | eNqFkL9uFDEQhy0UJC4Jb0DhhnKX8Xq9u0eBhE78iRSJgkBrzXrHd77s2SvbhNDxDrxhngSfDhoKMs003--nme-cnfngibEXAmoBonu1rxfMkUzdgBA19DWI5glbiaFvql627RlbFayvhk6pZ-w8pT0AdHI9rNj8mXLiwXJclhju3QGz81tuv3mTXfCJf3d5x63zLhP_iot3tw8_f212FO_KDf7WJT65A_lUYG5D5J4wUsqVJ7fdjSEmjvM2xNJySJfsqcU50fM_-4J9ef_uZvOxuv704Wrz9royUna5QkmwnrpBwrhW1I4AqlGtVK0iYyZohmHqLfRqKLMesUOQ1gIhohqBRisv2MtT74LJ4GwjeuOSXmJ5L_7QTds1vWiGwr0-cSaGlCJZbVzG4985opu1AH30q_f65Fcf_WrodfFbwu0_4b_9j8TenGJUBNw5ijoZR97Q5Aqa9RTc_wt-A8oLnSc |
| CODEN | PRLEDG |
| CitedBy_id | crossref_primary_10_1002_widm_1252 crossref_primary_10_1016_j_neucom_2015_11_100 crossref_primary_10_1016_j_inffus_2025_102996 crossref_primary_10_1016_j_neucom_2023_126227 crossref_primary_10_1016_j_neucom_2018_10_087 crossref_primary_10_1016_j_neucom_2025_130521 crossref_primary_10_1016_j_neunet_2016_07_002 crossref_primary_10_1145_2836165 crossref_primary_10_1016_j_neucom_2022_07_010 crossref_primary_10_1109_TCYB_2014_2361857 crossref_primary_10_3390_s22072704 |
| Cites_doi | 10.1126/science.290.5500.2323 10.1109/TIT.1970.1054466 10.1109/5.58325 10.1145/355744.355745 10.1145/238061.238070 10.1145/361002.361007 10.1162/089976699300016304 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.patrec.2011.07.012 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1872-7344 |
| EndPage | 1893 |
| ExternalDocumentID | 24627128 10_1016_j_patrec_2011_07_012 S016786551100225X |
| GrantInformation_xml | – fundername: Polish Government, Ministry of Science and Higher Education grantid: N N516 424938 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c336t-a3e09d6830b95e4b0052543545eccd0288d7f07588889ba6a03ff0eaaa5b0ebf3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296547400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8655 |
| IngestDate | Mon Jul 21 09:15:29 EDT 2025 Sat Nov 29 08:09:16 EST 2025 Tue Nov 18 22:08:46 EST 2025 Fri Feb 23 02:26:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Statistical learning theory k-Nearest neighbors Vapnik–Chervonenkis dimension Generalization Complexity selection Structural risk minimization Learning Nearest neighbour Vapnik-Chervonenkis dimension Cross validation Algorithm Signal analysis |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c336t-a3e09d6830b95e4b0052543545eccd0288d7f07588889ba6a03ff0eaaa5b0ebf3 |
| PageCount | 12 |
| ParticipantIDs | pascalfrancis_primary_24627128 crossref_citationtrail_10_1016_j_patrec_2011_07_012 crossref_primary_10_1016_j_patrec_2011_07_012 elsevier_sciencedirect_doi_10_1016_j_patrec_2011_07_012 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-15 |
| PublicationDateYYYYMMDD | 2011-10-15 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2011 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Cherkassky, Mulier (b0025) 1998 Devroye, Gyorfi, Lugosi (b0030) 1996 Holden, S., 1996. Cross-validation and the PAC learning model. Technical Report. Research Note, RN/96/64. Department of CS, University College, London. Friedman (b0040) 2009 Simard, LeCun, Denker, Victorri (b0105) 2000; vol. 11 Friedman (b0035) 1977; 3 Vincent, Bengio (b0125) 2001 Anthony, Bartlett (b0005) 2009 Bentley (b0020) 1975; 18 Aurenhammer, Klein (b0010) 2000 Vapnik (b0115) 1995 Jahne (b0065) 2004 Vapnik (b0110) 1995 Shawe-Taylor, J., et al., 1996. A framework for structural risk minimization. In: COLT, ACM Press, pp. 68–76, ISBN 0-89791-811-8. Available from Bartlett, Mendelson (b0015) 2002; 3 Graham, Knuth, Patashik (b0045) 2002 Roweis, Saul (b0095) 2000; 290 Kohonen (b0075) 1990; 78 Hellman, Raviv (b0050) 1970; IT-16 Hjorth (b0055) 1994 . Kohonen, T., 1992. Clustering, taxonomy, and topological maps of patterns. In: Proc. 6th Internat. Conf. on Pattern Recognition, Munich, Germany, pp. 114–128. Vapnik, V., Chervonenkis, A., 1989. The necessary and sufficient conditions for the consistency of the method of empirical risk minimization. In: Yearbook of the Academy of Sciences of the USSR on Recognition, Classification and Forecasting, vol. 2, pp. 217–249. Korzeń, Klęsk (b0085) 2008; vol. 5097 Kearns, Ron (b0070) 1999; 11 Lloyd, S.P., 1957. Least squares quantization in PCM’s. Technical Report. Bell Telephone Laboratories, Murray Hill, New Jersey. Anthony (10.1016/j.patrec.2011.07.012_b0005) 2009 Aurenhammer (10.1016/j.patrec.2011.07.012_b0010) 2000 Hjorth (10.1016/j.patrec.2011.07.012_b0055) 1994 10.1016/j.patrec.2011.07.012_b0120 Kohonen (10.1016/j.patrec.2011.07.012_b0075) 1990; 78 10.1016/j.patrec.2011.07.012_b0100 10.1016/j.patrec.2011.07.012_b0060 Roweis (10.1016/j.patrec.2011.07.012_b0095) 2000; 290 Bentley (10.1016/j.patrec.2011.07.012_b0020) 1975; 18 10.1016/j.patrec.2011.07.012_b0080 Korzeń (10.1016/j.patrec.2011.07.012_b0085) 2008; vol. 5097 Bartlett (10.1016/j.patrec.2011.07.012_b0015) 2002; 3 Cherkassky (10.1016/j.patrec.2011.07.012_b0025) 1998 Vincent (10.1016/j.patrec.2011.07.012_b0125) 2001 Hellman (10.1016/j.patrec.2011.07.012_b0050) 1970; IT-16 Vapnik (10.1016/j.patrec.2011.07.012_b0115) 1995 Friedman (10.1016/j.patrec.2011.07.012_b0035) 1977; 3 10.1016/j.patrec.2011.07.012_b0090 Friedman (10.1016/j.patrec.2011.07.012_b0040) 2009 Jahne (10.1016/j.patrec.2011.07.012_b0065) 2004 Devroye (10.1016/j.patrec.2011.07.012_b0030) 1996 Kearns (10.1016/j.patrec.2011.07.012_b0070) 1999; 11 Vapnik (10.1016/j.patrec.2011.07.012_b0110) 1995 Graham (10.1016/j.patrec.2011.07.012_b0045) 2002 Simard (10.1016/j.patrec.2011.07.012_b0105) 2000; vol. 11 |
| References_xml | – volume: 3 start-page: 209 year: 1977 end-page: 226 ident: b0035 article-title: An algorithm for finding best matches in logarithmic expected time publication-title: ACM Trans. Math. Softw. – reference: Vapnik, V., Chervonenkis, A., 1989. The necessary and sufficient conditions for the consistency of the method of empirical risk minimization. In: Yearbook of the Academy of Sciences of the USSR on Recognition, Classification and Forecasting, vol. 2, pp. 217–249. – volume: IT-16 start-page: 368 year: 1970 end-page: 372 ident: b0050 article-title: Probability of error, equivocation and the Chernoff bound publication-title: IEEE Trans. Inform. Theor. – year: 2009 ident: b0005 article-title: Neural Network Learning: Theoretical Foundations – year: 1996 ident: b0030 article-title: A Probabilistic Theory of Pattern Recognition – year: 2009 ident: b0040 article-title: The Elements of Statistical Learning – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: b0095 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – year: 2000 ident: b0010 article-title: Voronoi Diagrams – year: 1994 ident: b0055 article-title: Computer Intensive Statistical Methods Validation, Model Selection, and Bootstrap – volume: 11 start-page: 1427 year: 1999 end-page: 1453 ident: b0070 article-title: Algorithmic stability and sanity-check bounds for leave-one-out cross-validation publication-title: Neural Comput. – reference: Lloyd, S.P., 1957. Least squares quantization in PCM’s. Technical Report. Bell Telephone Laboratories, Murray Hill, New Jersey. – volume: 78 start-page: 1464 year: 1990 end-page: 1479 ident: b0075 article-title: The self-organizing map publication-title: Proc. IEEE – volume: vol. 11 year: 2000 ident: b0105 article-title: Transformation invariance in pattern recognition: Tangent distance and propagation publication-title: International Journal of Imaging Systems and Technology – year: 1995 ident: b0110 article-title: The Nature of Statistical Learning Theory – start-page: 985 year: 2001 end-page: 992 ident: b0125 article-title: K-local hyperplane and convex distance nearest neighbors algorithms publication-title: Adv. Neural Inform. Process. Syst. – volume: vol. 5097 start-page: 597 year: 2008 end-page: 608 ident: b0085 article-title: Maximal margin estimation with perceptron-like algorithm publication-title: Lecture Notes in Computer Science – year: 1998 ident: b0025 article-title: Learning From Data publication-title: Adaptive and Learning Systems for Signal Processing, Communications and Control – volume: 18 year: 1975 ident: b0020 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM – reference: Holden, S., 1996. Cross-validation and the PAC learning model. Technical Report. Research Note, RN/96/64. Department of CS, University College, London. – reference: >. – reference: Kohonen, T., 1992. Clustering, taxonomy, and topological maps of patterns. In: Proc. 6th Internat. Conf. on Pattern Recognition, Munich, Germany, pp. 114–128. – year: 1995 ident: b0115 article-title: Statistical Learning Theory: Inference from Small Samples – year: 2004 ident: b0065 article-title: Practical Handbook on Image Processing for Scientific and Technical Application – year: 2002 ident: b0045 article-title: Concrete Mathematics. A foundation for Computer Science – volume: 3 start-page: 463 year: 2002 end-page: 482 ident: b0015 article-title: Rademacher and gaussian complexities: risk bounds and structural results publication-title: J. Mach. Learn. Res. – reference: Shawe-Taylor, J., et al., 1996. A framework for structural risk minimization. In: COLT, ACM Press, pp. 68–76, ISBN 0-89791-811-8. Available from: < – year: 1994 ident: 10.1016/j.patrec.2011.07.012_b0055 – year: 1995 ident: 10.1016/j.patrec.2011.07.012_b0115 – volume: 290 start-page: 2323 year: 2000 ident: 10.1016/j.patrec.2011.07.012_b0095 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – year: 1996 ident: 10.1016/j.patrec.2011.07.012_b0030 – volume: IT-16 start-page: 368 year: 1970 ident: 10.1016/j.patrec.2011.07.012_b0050 article-title: Probability of error, equivocation and the Chernoff bound publication-title: IEEE Trans. Inform. Theor. doi: 10.1109/TIT.1970.1054466 – year: 2009 ident: 10.1016/j.patrec.2011.07.012_b0005 – year: 2002 ident: 10.1016/j.patrec.2011.07.012_b0045 – volume: vol. 11 year: 2000 ident: 10.1016/j.patrec.2011.07.012_b0105 article-title: Transformation invariance in pattern recognition: Tangent distance and propagation – year: 1995 ident: 10.1016/j.patrec.2011.07.012_b0110 – ident: 10.1016/j.patrec.2011.07.012_b0060 – volume: 78 start-page: 1464 year: 1990 ident: 10.1016/j.patrec.2011.07.012_b0075 article-title: The self-organizing map publication-title: Proc. IEEE doi: 10.1109/5.58325 – volume: 3 start-page: 463 year: 2002 ident: 10.1016/j.patrec.2011.07.012_b0015 article-title: Rademacher and gaussian complexities: risk bounds and structural results publication-title: J. Mach. Learn. Res. – year: 2009 ident: 10.1016/j.patrec.2011.07.012_b0040 – volume: 3 start-page: 209 year: 1977 ident: 10.1016/j.patrec.2011.07.012_b0035 article-title: An algorithm for finding best matches in logarithmic expected time publication-title: ACM Trans. Math. Softw. doi: 10.1145/355744.355745 – year: 2004 ident: 10.1016/j.patrec.2011.07.012_b0065 – year: 2000 ident: 10.1016/j.patrec.2011.07.012_b0010 – ident: 10.1016/j.patrec.2011.07.012_b0100 doi: 10.1145/238061.238070 – volume: vol. 5097 start-page: 597 year: 2008 ident: 10.1016/j.patrec.2011.07.012_b0085 article-title: Maximal margin estimation with perceptron-like algorithm – ident: 10.1016/j.patrec.2011.07.012_b0090 – volume: 18 year: 1975 ident: 10.1016/j.patrec.2011.07.012_b0020 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM doi: 10.1145/361002.361007 – year: 1998 ident: 10.1016/j.patrec.2011.07.012_b0025 article-title: Learning From Data – ident: 10.1016/j.patrec.2011.07.012_b0120 – start-page: 985 year: 2001 ident: 10.1016/j.patrec.2011.07.012_b0125 article-title: K-local hyperplane and convex distance nearest neighbors algorithms publication-title: Adv. Neural Inform. Process. Syst. – volume: 11 start-page: 1427 year: 1999 ident: 10.1016/j.patrec.2011.07.012_b0070 article-title: Algorithmic stability and sanity-check bounds for leave-one-out cross-validation publication-title: Neural Comput. doi: 10.1162/089976699300016304 – ident: 10.1016/j.patrec.2011.07.012_b0080 |
| SSID | ssj0006398 |
| Score | 2.0851398 |
| Snippet | ► Reformulation of
k-NN algorithm to alpha-NN
∗ algorithm (where alpha is a fraction). ► Establishing sets of functions for alpha-NN
∗, with finite capacity. ►... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1882 |
| SubjectTerms | Applied sciences Complexity selection Exact sciences and technology Generalization Information, signal and communications theory k-Nearest neighbors Signal and communications theory Signal representation. Spectral analysis Signal, noise Statistical learning theory Structural risk minimization Telecommunications and information theory Vapnik–Chervonenkis dimension |
| Title | Sets of approximating functions with finite Vapnik–Chervonenkis dimension for nearest-neighbors algorithms |
| URI | https://dx.doi.org/10.1016/j.patrec.2011.07.012 |
| Volume | 32 |
| WOSCitedRecordID | wos000296547400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLeqjgMIDRggNmDygZ2mVGmdxM5xqoaAw1SJgXqLHMdG3aK0arqq4jRpH2HfcJ-E539pSgVjB3qIqqh23b6f3_vl-f1B6AONFAPDmASxyHkQ0SIJOBiaAMhyHqYFWHiRm2YT9OyMjcfpqNO58bkwy5JWFVut0tl_FTXcA2Hr1NkHiLuZFG7AexA6XEHscP0nwX-VNjzDVAtfTTQj1cGSYL9s0JvxvKqJ5prH3_msmlz6gAcyBAEup5WsgFUeF7ruf-0jEStd67ZeBJV2pea6Qw8vf0znMJcrd-4I7sjU69Q5Mi4wCcaXJmVofWpk-Gya1kYRj3rN_en8pzwaxkcsMm7aXtsjYUPibE6md1KC8tUJr20tu_ZiXvm8Uacz-8y2H3L2t89sy8Qt3W7dDBc9fUgghau-SnuhC8PeKKX9m4lrAg99TNtFZmfJ9CxZSLNQd6reGdA4ZV20c_L5dPylMehA4pgvEa9_ls_ANGGC26v5E8N5OuM17DtlG6a0WMz5c7TrHj_wiYXNC9SR1R565lt7YKfp99CTVp3Kl6jUmMJThTcwhRtMYY0pbDGFLaburm_baMINmjCgCW-hCa_R9Ap9-3h6PvwUuDYdgSAkWQScSNjVCSNhnsYyMicNMbDwKAb1UAB_ZQVVwEwZvNKcJzwkSoWScx7nocwVeY26FazmDcKpFPAIwSnvUxHlFMgqUX1FEhGFCh4FxD4i_q_NhKthr1uplNnfBLuPgmbUzNZwuefz1EstczzU8ssMoHjPyMMNITdfN4iSAQUqePDApbxFj9c77B3qLuZX8j16JJaLST0_dED9BS2cubg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sets+of+approximating+functions+with+finite+Vapnik%E2%80%93Chervonenkis+dimension+for+nearest-neighbors+algorithms&rft.jtitle=Pattern+recognition+letters&rft.au=Kl%C4%99sk%2C+P.&rft.au=Korze%C5%84%2C+M.&rft.date=2011-10-15&rft.issn=0167-8655&rft.volume=32&rft.issue=14&rft.spage=1882&rft.epage=1893&rft_id=info:doi/10.1016%2Fj.patrec.2011.07.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2011_07_012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |