Cutwidth I: A linear time fixed parameter algorithm
The cutwidth of a graph G is the smallest integer k such that the vertices of G can be arranged in a linear layout [ v 1 , … , v n ] in such a way that, for every i = 1 , … , n − 1 , there are at most k edges with one endpoint in { v 1 , … , v i } and the other in { v i + 1 , … , v n } . In this pap...
Uloženo v:
| Vydáno v: | Journal of algorithms Ročník 56; číslo 1; s. 1 - 24 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
01.07.2005
Elsevier |
| Témata: | |
| ISSN: | 0196-6774, 1090-2678 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The
cutwidth of a graph
G is the smallest integer
k such that the vertices of
G can be arranged in a linear layout
[
v
1
,
…
,
v
n
]
in such a way that, for every
i
=
1
,
…
,
n
−
1
, there are at most
k edges with one endpoint in
{
v
1
,
…
,
v
i
}
and the other in
{
v
i
+
1
,
…
,
v
n
}
. In this paper we provide, for any constant
k, a linear time algorithm that for any input graph
G, answers whether
G has cutwidth at most
k and, in the case of a positive answer, outputs the corresponding linear layout. |
|---|---|
| ISSN: | 0196-6774 1090-2678 |
| DOI: | 10.1016/j.jalgor.2004.12.001 |