Cutwidth I: A linear time fixed parameter algorithm

The cutwidth of a graph G is the smallest integer k such that the vertices of G can be arranged in a linear layout [ v 1 , … , v n ] in such a way that, for every i = 1 , … , n − 1 , there are at most k edges with one endpoint in { v 1 , … , v i } and the other in { v i + 1 , … , v n } . In this pap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algorithms Ročník 56; číslo 1; s. 1 - 24
Hlavní autoři: Thilikos, Dimitrios M., Serna, Maria, Bodlaender, Hans L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 01.07.2005
Elsevier
Témata:
ISSN:0196-6774, 1090-2678
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The cutwidth of a graph G is the smallest integer k such that the vertices of G can be arranged in a linear layout [ v 1 , … , v n ] in such a way that, for every i = 1 , … , n − 1 , there are at most k edges with one endpoint in { v 1 , … , v i } and the other in { v i + 1 , … , v n } . In this paper we provide, for any constant k, a linear time algorithm that for any input graph G, answers whether G has cutwidth at most k and, in the case of a positive answer, outputs the corresponding linear layout.
ISSN:0196-6774
1090-2678
DOI:10.1016/j.jalgor.2004.12.001