On the numerical solution of direct and inverse problems for the heat equation in a semi-infinite region

We consider the initial boundary value problem for the heat equation in a region with infinite and finite boundaries (direct problem) and the related problem to reconstruct the finite boundary from Cauchy data on the infinite boundary (inverse problem). The numerical solution of the direct problem i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 108; číslo 1; s. 41 - 55
Hlavný autor: Chapko, Roman
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 15.08.1999
Elsevier
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the initial boundary value problem for the heat equation in a region with infinite and finite boundaries (direct problem) and the related problem to reconstruct the finite boundary from Cauchy data on the infinite boundary (inverse problem). The numerical solution of the direct problem is realized by a boundary integral equation method. For an approximate solution of the inverse problem we use a regularized Newton method based on numerical approach for the direct problem. Numerical examples illustrating our results are presented.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(99)00099-0