A Novel Adaptive Fuzzy Local Information C -Means Clustering Algorithm for Remotely Sensed Imagery Classification
This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by produc...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 55; číslo 9; s. 5057 - 5068 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!