Sample size lower bounds in PAC learning by algorithmic complexity theory
This paper focuses on a general setup for obtaining sample size lower bounds for learning concept classes under fixed distribution laws in an extended PAC learning framework. These bounds do not depend on the running time of learning procedures and are information-theoretic in nature. They are based...
Gespeichert in:
| Veröffentlicht in: | Theoretical computer science Jg. 209; H. 1; S. 141 - 162 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
06.12.1998
Elsevier |
| Schlagworte: | |
| ISSN: | 0304-3975, 1879-2294 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper focuses on a general setup for obtaining sample size lower bounds for learning concept classes under fixed distribution laws in an extended PAC learning framework. These bounds do not depend on the running time of learning procedures and are information-theoretic in nature. They are based on incompressibility methods drawn from Kolmogorov Complexity and Algorithmic Probability theories. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/S0304-3975(97)00102-3 |