Challenges in KNN Classification

The KNN algorithm is one of the most popular data mining algorithms. It has been widely and successfully applied to data analysis applications across a variety of research topics in computer science. This paper illustrates that, despite its success, there remain many challenges in KNN classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 34; H. 10; S. 4663 - 4675
1. Verfasser: Zhang, Shichao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The KNN algorithm is one of the most popular data mining algorithms. It has been widely and successfully applied to data analysis applications across a variety of research topics in computer science. This paper illustrates that, despite its success, there remain many challenges in KNN classification, including K computation, nearest neighbor selection, nearest neighbor search and classification rules. Having established these issues, recent approaches to their resolution are examined in more detail, thereby providing a potential roadmap for ongoing KNN-related research, as well as some new classification rules regarding how to tackle the issue of training sample imbalance. To evaluate the proposed approaches, some experiments were conducted with 15 UCI benchmark datasets.
AbstractList The KNN algorithm is one of the most popular data mining algorithms. It has been widely and successfully applied to data analysis applications across a variety of research topics in computer science. This paper illustrates that, despite its success, there remain many challenges in KNN classification, including K computation, nearest neighbor selection, nearest neighbor search and classification rules. Having established these issues, recent approaches to their resolution are examined in more detail, thereby providing a potential roadmap for ongoing KNN-related research, as well as some new classification rules regarding how to tackle the issue of training sample imbalance. To evaluate the proposed approaches, some experiments were conducted with 15 UCI benchmark datasets.
Author Zhang, Shichao
Author_xml – sequence: 1
  givenname: Shichao
  orcidid: 0000-0001-9981-2970
  surname: Zhang
  fullname: Zhang, Shichao
  email: zhangsc@csu.edu.cn
  organization: College of Computer Science and Technology, Central South University, Changsha, PR China
BookMark eNp9kLFOwzAQhi1UJNrCAyCWSMwpPtuN7RGFFlCrspTZcp0zuApJsdOBtyelFQMD093wf_-dvhEZNG2DhFwDnQBQfbdePMwmjDKYcCo0m9IzMoTpVOUMNAz6nQrIBRfygoxS2lJKlVQwJFn5busamzdMWWiyxWqVlbVNKfjgbBfa5pKce1snvDrNMXmdz9blU758eXwu75e547zocmGldUxaWRXWK1dZZJwLz4A5zSvuNqBASlCq8hJRWNQbqwsEJwsPhad8TG6PvbvYfu4xdWbb7mPTnzRMglBacc76lDymXGxTiuiNC93Pn120oTZAzUGHOegwBx3mpKMn4Q-5i-HDxq9_mZsjExDxN685CFpQ_g0XzWsa
CODEN ITKEEH
CitedBy_id crossref_primary_10_1145_3641857
crossref_primary_10_1063_5_0275606
crossref_primary_10_1109_TCSII_2024_3362957
crossref_primary_10_3390_math13142290
crossref_primary_10_1109_JSEN_2023_3322040
crossref_primary_10_14710_transmisi_27_3_140_148
crossref_primary_10_3390_pr11051460
crossref_primary_10_1007_s41748_025_00772_2
crossref_primary_10_1016_j_acags_2025_100288
crossref_primary_10_7717_peerj_cs_2247
crossref_primary_10_1016_j_ins_2024_121853
crossref_primary_10_1016_j_tifs_2025_105145
crossref_primary_10_3390_s24134256
crossref_primary_10_3390_fi17030107
crossref_primary_10_1002_cpe_70180
crossref_primary_10_1016_j_infsof_2024_107657
crossref_primary_10_1007_s11227_024_06539_2
crossref_primary_10_3390_cancers14225608
crossref_primary_10_1109_ACCESS_2024_3422313
crossref_primary_10_1016_j_knosys_2025_113886
crossref_primary_10_3390_app15094920
crossref_primary_10_1145_3653719
crossref_primary_10_1016_j_jconhyd_2025_104498
crossref_primary_10_1016_j_measurement_2025_117598
crossref_primary_10_3390_en17215424
crossref_primary_10_3389_fnbot_2023_1181864
crossref_primary_10_1109_JBHI_2024_3415641
crossref_primary_10_1145_3643645
crossref_primary_10_1007_s10928_025_09972_9
crossref_primary_10_1038_s41598_025_85960_w
crossref_primary_10_1093_cercor_bhae498
crossref_primary_10_3390_healthcare11010081
crossref_primary_10_3390_iot6010001
crossref_primary_10_1016_j_ijar_2023_108966
crossref_primary_10_1007_s00521_024_10867_y
crossref_primary_10_1016_j_nxener_2025_100350
crossref_primary_10_1109_JETCAS_2023_3252667
crossref_primary_10_3390_s24237710
crossref_primary_10_1016_j_inffus_2025_103186
crossref_primary_10_1016_j_techfore_2023_123008
crossref_primary_10_3354_meps14873
crossref_primary_10_3390_make7020027
crossref_primary_10_1016_j_pdisas_2024_100398
crossref_primary_10_3390_insects15060418
crossref_primary_10_1155_2021_1102083
crossref_primary_10_3390_jmse12111943
crossref_primary_10_1002_cpe_8289
crossref_primary_10_3389_fcomp_2024_1477501
crossref_primary_10_7717_peerj_17748
crossref_primary_10_1109_ACCESS_2024_3487841
crossref_primary_10_1007_s40747_025_02014_4
crossref_primary_10_1007_s00477_025_03020_1
crossref_primary_10_3390_app15116227
crossref_primary_10_1145_3733604
crossref_primary_10_7717_peerj_cs_2576
crossref_primary_10_1016_j_datak_2025_102464
crossref_primary_10_1007_s40031_025_01246_9
crossref_primary_10_1016_j_matlet_2024_137872
crossref_primary_10_1155_2023_6536768
crossref_primary_10_1016_j_ijleo_2025_172390
crossref_primary_10_1039_D5CC01291K
crossref_primary_10_1016_j_infrared_2025_105713
crossref_primary_10_1016_j_asoc_2025_113070
crossref_primary_10_1016_j_knosys_2024_112635
crossref_primary_10_1007_s11760_024_03562_x
crossref_primary_10_1016_j_segan_2025_101639
crossref_primary_10_1109_TITS_2024_3510678
crossref_primary_10_1007_s10115_025_02404_7
crossref_primary_10_1016_j_jmrt_2025_09_205
crossref_primary_10_1016_j_physleta_2025_130763
crossref_primary_10_1016_j_asr_2025_08_061
crossref_primary_10_1007_s11571_021_09735_5
crossref_primary_10_1016_j_teler_2024_100120
crossref_primary_10_1007_s11340_021_00787_6
crossref_primary_10_1016_j_inffus_2023_102145
crossref_primary_10_3390_rs16234414
crossref_primary_10_1016_j_bios_2024_116718
crossref_primary_10_1145_3656345
crossref_primary_10_1155_2022_7611670
crossref_primary_10_1016_j_aei_2024_102963
crossref_primary_10_1007_s43503_025_00066_6
crossref_primary_10_1016_j_aeue_2023_154999
crossref_primary_10_1088_1402_4896_ad88ba
crossref_primary_10_1007_s00170_025_15473_3
crossref_primary_10_3390_chemistry7030080
crossref_primary_10_1016_j_kjs_2024_100324
crossref_primary_10_1109_TSUSC_2024_3390003
crossref_primary_10_1016_j_foodchem_2025_144279
crossref_primary_10_1016_j_saa_2025_125806
crossref_primary_10_1007_s11668_023_01794_6
crossref_primary_10_1142_S0218126625503360
crossref_primary_10_1016_j_fbio_2024_104003
crossref_primary_10_3390_s24227316
crossref_primary_10_1109_TEVC_2024_3418858
crossref_primary_10_1080_00222348_2025_2468610
crossref_primary_10_1109_TIM_2025_3602537
crossref_primary_10_2298_TSCI231111008C
crossref_primary_10_1016_j_vlsi_2025_102515
crossref_primary_10_3390_agronomy14040719
crossref_primary_10_1145_3736404
crossref_primary_10_3390_computers14020073
crossref_primary_10_1371_journal_pone_0331089
crossref_primary_10_1109_TKDE_2021_3095103
crossref_primary_10_3390_su17177602
crossref_primary_10_3390_s25113280
crossref_primary_10_3233_AIC_230312
crossref_primary_10_3390_sym16070850
crossref_primary_10_1186_s12913_025_12502_5
crossref_primary_10_1088_2057_1976_adee28
crossref_primary_10_1109_TPAMI_2024_3400281
crossref_primary_10_1007_s10661_024_13209_6
crossref_primary_10_1145_3663575
crossref_primary_10_1016_j_jreng_2024_12_002
crossref_primary_10_1016_j_atech_2023_100343
crossref_primary_10_1016_j_foodcont_2025_111176
crossref_primary_10_1016_j_fuel_2024_132406
crossref_primary_10_3390_electronics12143002
crossref_primary_10_1016_j_psep_2024_11_135
crossref_primary_10_1145_3708353
crossref_primary_10_1007_s10472_023_09882_x
crossref_primary_10_1016_j_buildenv_2024_111799
crossref_primary_10_1007_s11356_024_35026_7
crossref_primary_10_1109_JSEN_2023_3323674
crossref_primary_10_3390_math12040536
crossref_primary_10_1016_j_asoc_2025_113852
crossref_primary_10_1016_j_procs_2025_04_160
crossref_primary_10_1007_s00530_025_01676_x
crossref_primary_10_3390_bdcc9040102
crossref_primary_10_1016_j_pce_2025_104093
crossref_primary_10_1016_j_knosys_2024_112357
crossref_primary_10_3390_app15137580
crossref_primary_10_3390_met14080856
crossref_primary_10_3390_s23062908
Cites_doi 10.1109/TGRS.2005.848706
10.1016/j.knosys.2019.01.016
10.1016/j.neucom.2020.03.016
10.1109/TSMC.2018.2790914
10.1109/TKDE.2017.2763618
10.1109/34.993558
10.1109/TPAMI.2010.57
10.1109/TPAMI.2002.1033219
10.1007/s00521-018-3836-z
10.1016/j.patcog.2016.11.010
10.1016/j.patrec.2017.09.036
10.1214/aoms/1177700079
10.1109/TPAMI.2019.2907086
10.1016/j.patcog.2018.08.003
10.1016/j.cag.2016.03.006
10.2307/1403797
10.1016/j.jss.2012.05.073
10.1109/TPAMI.2007.1140
10.1016/j.is.2016.03.003
10.1023/B:VISI.0000046589.39864.ee
10.1109/TPAMI.2006.126
10.3390/info9090234
10.1016/j.neucom.2015.12.035
10.1109/TKDE.2019.2909204
10.1109/TSMCB.2007.908363
10.1109/CVPR.2005.320
10.1016/j.patrec.2018.03.023
10.1109/TPAMI.2009.55
10.7551/mitpress/1120.003.0090
10.1007/BF00994658
10.1155/2010/597373
10.1007/s10115-007-0114-2
10.1016/j.eswa.2018.08.021
10.1111/j.1469-1809.1936.tb02137.x
10.1007/978-3-540-79299-4_7
10.1016/j.patcog.2019.106970
10.1109/TIT.1967.1053964
10.1145/2990508
10.1109/CVPR.2001.990456
10.1145/7902.7906
10.1007/BF00114779
10.1198/016214501750332839
10.1109/TNNLS.2017.2673241
10.1109/TPAMI.2007.1182
10.1007/978-3-540-39964-3_62
10.1109/TPAMI.2004.1273978
10.1088/1742-6596/978/1/012047
10.1109/TPAMI.2013.83
10.1007/978-3-642-39787-5_10
10.1016/j.patcog.2005.08.016
10.1016/j.patcog.2017.09.038
10.1007/978-3-540-74976-9_25
10.1007/s10489-009-0207-6
10.1016/j.patcog.2006.12.019
10.1016/j.patcog.2018.04.024
10.1007/978-3-642-10844-0_50
10.1016/j.neucom.2018.11.101
10.1016/S0167-8655(97)00112-8
10.1109/ACCESS.2019.2909752
10.1145/3319532
10.1007/s11704-018-7049-5
10.1145/1273496.1273523
10.1109/CVPR.2007.383124
10.1109/TKDE.2018.2858782
10.1016/0169-7439(87)80084-9
10.1007/3-540-48508-2_2
10.1109/TKDE.2016.2535287
10.14778/3397230.3397240
10.1109/TKDE.2018.2873378
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2021.3049250
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 4675
ExternalDocumentID 10_1109_TKDE_2021_3049250
9314060
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; Natural Science Foundation of China
  grantid: 61836016; 61672177
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-4a7ac27a7d6af8cdae2334f212c93d3cb18177188df7ee4ae9ba96e1c76f16f03
IEDL.DBID RIE
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853844700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 07:07:01 EST 2025
Sat Nov 29 02:36:03 EST 2025
Tue Nov 18 22:11:36 EST 2025
Wed Aug 27 02:18:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-4a7ac27a7d6af8cdae2334f212c93d3cb18177188df7ee4ae9ba96e1c76f16f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9981-2970
OpenAccessLink https://ieeexplore.ieee.org/document/9314060
PQID 2714898332
PQPubID 85438
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2021_3049250
crossref_primary_10_1109_TKDE_2021_3049250
ieee_primary_9314060
proquest_journals_2714898332
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
Dasgupta (ref79)
ref12
ref56
ref15
ref59
ref14
ref58
ref53
Singh (ref20)
ref52
ref11
ref55
ref10
ref54
Globerson (ref66); 18
ref17
Sebestyen (ref18) 1962
Hastie (ref19)
ref51
ref50
Simard (ref43)
ref46
ref45
ref48
Vincent (ref37)
ref47
ref42
ref41
ref44
Zhang (ref16) 2008; 9
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref40
ref80
ref35
ref34
ref78
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
Tao (ref24)
ref71
ref70
Zhang (ref81) 2010; 11
ref73
ref72
Goldberger (ref62); 17
ref68
ref23
ref67
ref26
ref25
ref69
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
Weinberger (ref61); 18
References_xml – start-page: 409
  volume-title: Proc. 8th Int. Conf. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Discriminant adaptive nearest neighbor classification and regression
– ident: ref25
  doi: 10.1109/TGRS.2005.848706
– ident: ref30
  doi: 10.1016/j.knosys.2019.01.016
– ident: ref72
  doi: 10.1016/j.neucom.2020.03.016
– ident: ref56
  doi: 10.1109/TSMC.2018.2790914
– ident: ref14
  doi: 10.1109/TKDE.2017.2763618
– volume-title: Decision-Making Processes in Pattern Recognition
  year: 1962
  ident: ref18
– ident: ref5
  article-title: 30 questions to test a data scientist on k-nearest neighbors (kNN) algorithm
– ident: ref44
  doi: 10.1109/34.993558
– ident: ref71
  doi: 10.1109/TPAMI.2010.57
– ident: ref36
  doi: 10.1109/TPAMI.2002.1033219
– ident: ref10
  doi: 10.1007/s00521-018-3836-z
– ident: ref65
  doi: 10.1016/j.patcog.2016.11.010
– ident: ref9
  doi: 10.1016/j.patrec.2017.09.036
– ident: ref17
  doi: 10.1214/aoms/1177700079
– ident: ref73
  doi: 10.1109/TPAMI.2019.2907086
– ident: ref50
  doi: 10.1016/j.patcog.2018.08.003
– start-page: 50
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Efficient pattern recognition using a new transformation distance
– ident: ref76
  doi: 10.1016/j.cag.2016.03.006
– ident: ref1
  doi: 10.2307/1403797
– ident: ref41
  doi: 10.1016/j.jss.2012.05.073
– start-page: 744
  volume-title: Proc. 30th Int. Conf. Very Large Data Bases
  ident: ref24
  article-title: Reverse kNN search in arbitrary dimensionality
– ident: ref48
  doi: 10.1109/TPAMI.2007.1140
– ident: ref77
  doi: 10.1016/j.is.2016.03.003
– ident: ref45
  doi: 10.1023/B:VISI.0000046589.39864.ee
– ident: ref42
  doi: 10.1109/TPAMI.2006.126
– ident: ref57
  doi: 10.3390/info9090234
– ident: ref28
  doi: 10.1016/j.neucom.2015.12.035
– ident: ref80
  doi: 10.1109/TKDE.2019.2909204
– ident: ref33
  doi: 10.1109/TSMCB.2007.908363
– ident: ref46
  doi: 10.1109/CVPR.2005.320
– ident: ref55
  doi: 10.1016/j.patrec.2018.03.023
– ident: ref52
  doi: 10.1109/TPAMI.2009.55
– ident: ref23
  doi: 10.7551/mitpress/1120.003.0090
– ident: ref3
  doi: 10.1007/BF00994658
– ident: ref34
  doi: 10.1155/2010/597373
– ident: ref6
  doi: 10.1007/s10115-007-0114-2
– ident: ref51
  doi: 10.1016/j.eswa.2018.08.021
– ident: ref67
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref11
  doi: 10.1007/978-3-540-79299-4_7
– ident: ref75
  doi: 10.1016/j.patcog.2019.106970
– ident: ref2
  doi: 10.1109/TIT.1967.1053964
– ident: ref12
  doi: 10.1145/2990508
– ident: ref21
  doi: 10.1109/CVPR.2001.990456
– ident: ref39
  doi: 10.1145/7902.7906
– volume: 9
  start-page: 32
  issue: 1
  year: 2008
  ident: ref16
  article-title: Parimputation: From imputation and null-imputation to partially imputation
  publication-title: IEEE Intell. Informat. Bull.
– ident: ref38
  doi: 10.1007/BF00114779
– volume: 11
  start-page: 24
  issue: 1
  year: 2010
  ident: ref81
  article-title: KNN-CF approach: Incorporating certainty factor to kNN classification
  publication-title: IEEE Intell. Informat. Bull.
– ident: ref22
  doi: 10.1198/016214501750332839
– ident: ref35
  doi: 10.1109/TNNLS.2017.2673241
– ident: ref70
  doi: 10.1109/TPAMI.2007.1182
– ident: ref32
  doi: 10.1007/978-3-540-39964-3_62
– ident: ref47
  doi: 10.1109/TPAMI.2004.1273978
– ident: ref58
  doi: 10.1088/1742-6596/978/1/012047
– ident: ref63
  doi: 10.1109/TPAMI.2013.83
– ident: ref27
  doi: 10.1007/978-3-642-39787-5_10
– ident: ref49
  doi: 10.1016/j.patcog.2005.08.016
– volume: 17
  start-page: 513
  volume-title: Proc. 17th Int. Conf. Neural Inf. Process. Syst.
  ident: ref62
  article-title: Neighbourhood components analysis
– volume: 18
  start-page: 1473
  volume-title: Proc. 18th Int. Conf. Neural Inf. Process. Syst.
  ident: ref61
  article-title: Distance metric learning for large margin nearest neighbor classification
– ident: ref29
  doi: 10.1016/j.patcog.2017.09.038
– ident: ref13
  doi: 10.1007/978-3-540-74976-9_25
– ident: ref69
  doi: 10.1007/s10489-009-0207-6
– ident: ref26
  doi: 10.1016/j.patcog.2006.12.019
– ident: ref60
  doi: 10.1016/j.patcog.2018.04.024
– ident: ref4
  doi: 10.1007/978-3-642-10844-0_50
– start-page: 985
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref37
  article-title: K-local hyperplane and convex distance nearest neighbor algorithms
– ident: ref82
  doi: 10.1016/j.neucom.2018.11.101
– ident: ref54
  doi: 10.1016/S0167-8655(97)00112-8
– ident: ref59
  doi: 10.1109/ACCESS.2019.2909752
– volume: 18
  start-page: 451
  volume-title: Proc. 18th Int. Conf. Neural Inf. Process. Syst.
  ident: ref66
  article-title: Metric learning by collapsing classes
– start-page: 2
  volume-title: Proc. Workshop Adv. Concepts Intell. Vis. Syst.
  ident: ref20
  article-title: Nearest neighbour strategies for image understanding
– ident: ref31
  doi: 10.1145/3319532
– ident: ref15
  doi: 10.1007/s11704-018-7049-5
– ident: ref64
  doi: 10.1145/1273496.1273523
– ident: ref68
  doi: 10.1109/CVPR.2007.383124
– ident: ref8
  doi: 10.1109/TKDE.2018.2858782
– ident: ref53
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref40
  doi: 10.1007/3-540-48508-2_2
– ident: ref78
  doi: 10.1109/TKDE.2016.2535287
– ident: ref74
  doi: 10.14778/3397230.3397240
– start-page: 317
  volume-title: Proc. 26th Annu. Conf. Learn. Theory
  ident: ref79
  article-title: Randomized partition trees for exact nearest neighbor search
– ident: ref7
  doi: 10.1109/TKDE.2018.2873378
SSID ssj0008781
Score 2.7117245
Snippet The KNN algorithm is one of the most popular data mining algorithms. It has been widely and successfully applied to data analysis applications across a variety...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4663
SubjectTerms Algorithms
Classification
classification rule
Data analysis
Data mining
KNN classification
lazy learning
Licenses
Nearest neighbor methods
Partitioning algorithms
Prediction algorithms
Training
Training data
Title Challenges in KNN Classification
URI https://ieeexplore.ieee.org/document/9314060
https://www.proquest.com/docview/2714898332
Volume 34
WOSCitedRecordID wos000853844700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEPTjfF6ZQePInd0iRLmqPMDWFQPEzYraRpAgPZZD_8-02ytAwUwVsPSSlfmrx-fe97H8BDiZwe00mURTG0BCUpYqmQjqkWQ4NQgblB3myCZ1k6n4u3BjzVWhittS8-03136XP55Urt3K-ygSCWDjBL0I84Z3utVn3qptwbklp2YTkRoTxkMBMkBrPpy9gyQZz0XU4JO4n9QQzypio_TmIfXiat_z3YOZyFz8joeb_uF9DQyza0KouGKOzYNpwe9BvsQDSqrFM20WIZTbMs8qaYrlzIr9AlvE_Gs9FrHCwSYkUI28ZUcqkwl7xk0qSqlBoTQo2NR0qQkqjCBnBuw09aGq41lVoUUjCdKM5MwgwiV9Bcrpb6GiJNFWVqiBVxPeASJ2BVRSoUtvcxlOMuoAq0XIX-4c7G4iP3PAKJ3OGcO5zzgHMXHuspn_vmGX8N7jhg64EB0y70qpXJw_ba5JhbFidSQvDN77Nu4QQ7nYKvuutBc7ve6Ts4Vl_bxWZ979-cb997vS4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6MKagHp5vidGoPnsRuaZI2zVF0Y7JZPEzYLaRpCgPpZD_8-02yrgwUwVsPSSlfmrx-fe97H8Bdhqwe00qUeRoaghKkvlRI-1TzMEcoxSxHzmyCJUk8nfK3GjxUWhittSs-01176XL52Vyt7a-yHieGDkSGoO-FlGK0UWtV527MnCWp4ReGFRHKyhxmgHhvMnruGy6Ig67NKmErst-JQs5W5cdZ7ALMoPG_RzuB4_JD0nvcrPwp1HTRhMbWpMEr92wTjnY6DrbAe9qapyy9WeGNksRztpi2YMit0Rm8D_qTp6FfmiT4ipBo5VPJpMJMsiySeawyqTEhNDcRSXGSEZWaEM5MAIqznGlNpeap5JEOFIvyIMoROYd6MS_0BXiaKhqpECtiu8AFVsKq0pgrbO6TU4bbgLagCVV2ELdGFh_CMQnEhcVZWJxFiXMb7qspn5v2GX8Nbllgq4Elpm3obFdGlBtsKTAzPI7HhODL32fdwsFw8joW45dkdAWH2KoWXA1eB-qrxVpfw776Ws2Wixv3Fn0D5uHAdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+in+KNN+Classification&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhang%2C+Shichao&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=10&rft.spage=4663&rft.epage=4675&rft_id=info:doi/10.1109%2FTKDE.2021.3049250&rft.externalDocID=9314060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon