Challenges in KNN Classification
The KNN algorithm is one of the most popular data mining algorithms. It has been widely and successfully applied to data analysis applications across a variety of research topics in computer science. This paper illustrates that, despite its success, there remain many challenges in KNN classification...
Uloženo v:
| Vydáno v: | IEEE transactions on knowledge and data engineering Ročník 34; číslo 10; s. 4663 - 4675 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The KNN algorithm is one of the most popular data mining algorithms. It has been widely and successfully applied to data analysis applications across a variety of research topics in computer science. This paper illustrates that, despite its success, there remain many challenges in KNN classification, including K computation, nearest neighbor selection, nearest neighbor search and classification rules. Having established these issues, recent approaches to their resolution are examined in more detail, thereby providing a potential roadmap for ongoing KNN-related research, as well as some new classification rules regarding how to tackle the issue of training sample imbalance. To evaluate the proposed approaches, some experiments were conducted with 15 UCI benchmark datasets. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1041-4347 1558-2191 |
| DOI: | 10.1109/TKDE.2021.3049250 |