Density functionals from LDA to GGA
For ab initio calculations in quantum chemistry, materials science, biochemistry, and nanoelectronics, the Kohn–Sham density functional theory is a widely used method to solve the ground-state many-electron problem. Density functional theory requires approximations for the exchange–correlation (xc)...
Uloženo v:
| Vydáno v: | Computational materials science Ročník 11; číslo 2; s. 122 - 127 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.04.1998
Elsevier Science |
| Témata: | |
| ISSN: | 0927-0256, 1879-0801 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For ab initio calculations in quantum chemistry, materials science, biochemistry, and nanoelectronics, the Kohn–Sham density functional theory is a widely used method to solve the ground-state many-electron problem. Density functional theory requires approximations for the exchange–correlation (xc) energy as a functional of the density. The simplest approximations are the local density approximation (LDA) and the local spin density (LSD) approximation, which employ the xc energy of the (respectively, spin-unpolarized and spin-polarized) uniform electron gas as an input. Generalized gradient approximations (GGA's) go beyond the LDA and LSD descriptions by including density gradients, and improve calculated results significantly. Some GGA success stories are summarized. |
|---|---|
| ISSN: | 0927-0256 1879-0801 |
| DOI: | 10.1016/S0927-0256(97)00206-1 |