Matrix period in max-algebra

Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 103; H. 1; S. 167 - 175
Hauptverfasser: MOLNAROVA, M, PRIBIS, J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Lausanne Elsevier B.V 15.07.2000
Amsterdam Elsevier
New York, NY
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph of A. An O(n 3) algorithm for computing the exact value of the matrix period for a given matrix is described.
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(99)00242-5