ECM: An evidential version of the fuzzy c-means algorithm

A new clustering method for object data, called ECM (evidential c-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 41; číslo 4; s. 1384 - 1397
Hlavní autoři: Masson, Marie-Hélène, Denœux, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.04.2008
Elsevier Science
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A new clustering method for object data, called ECM (evidential c-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function is minimized using an FCM-like algorithm. A validity index allowing the determination of the proper number of clusters is also proposed. Experiments with synthetic and real data sets show that the proposed algorithm can be considered as a promising tool in the field of exploratory statistics.
AbstractList A new clustering method for object data, called ECM (evidential c-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function is minimized using an FCM-like algorithm. A validity index allowing the determination of the proper number of clusters is also proposed. Experiments with synthetic and real data sets show that the proposed algorithm can be considered as a promising tool in the field of exploratory statistics.
Author Masson, Marie-Hélène
Denœux, T.
Author_xml – sequence: 1
  givenname: Marie-Hélène
  surname: Masson
  fullname: Masson, Marie-Hélène
  email: mmasson@hds.utc.fr
– sequence: 2
  givenname: T.
  surname: Denœux
  fullname: Denœux, T.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20009741$$DView record in Pascal Francis
BookMark eNqFkD1PwzAURS1UJNrCP2Dwwphg106cdECqqvIhFbHAbLnOc-sqdSrbVGp_Pa6CGBhgesO750r3jNDAdQ4QuqUkp4SW99t8r6Lu1vmEEJGTKieUX6AhrQTLCsonAzQkhNGMTQi7QqMQtoRQkR5DVC_mr1M8cxgOtgEXrWrxAXywncOdwXED2HyeTkessx0oF7Bq1523cbO7RpdGtQFuvu8YfTwu3ufP2fLt6WU-W2aasTJmrGqULhRTdb1ilRYFFMSwkq9E0XCuKaWKskbUugAhOJ2AqeuSFqXhYlURU7Exuut79ypo1RqvnLZB7r3dKX-UaTKpE5hyvM9p34XgwfxEKJFnTXIre01nRkhSyaQpYdNfmLZRxbQ_emXb_-CHHoYk4GDBy6AtOA2N9aCjbDr7d8EXupuGLA
CODEN PTNRA8
CitedBy_id crossref_primary_10_1016_j_neucom_2025_131152
crossref_primary_10_1016_j_ijar_2013_09_001
crossref_primary_10_1016_j_inffus_2025_103721
crossref_primary_10_1109_TFUZZ_2024_3421564
crossref_primary_10_1155_2022_2895338
crossref_primary_10_1016_j_ins_2021_05_011
crossref_primary_10_1016_j_cja_2016_03_004
crossref_primary_10_1016_j_knosys_2020_105982
crossref_primary_10_1016_j_ijar_2017_09_008
crossref_primary_10_1016_j_patrec_2014_03_007
crossref_primary_10_3390_e23081061
crossref_primary_10_1016_j_ijar_2013_10_006
crossref_primary_10_3390_e22101106
crossref_primary_10_1051_jnwpu_20183610096
crossref_primary_10_1016_j_ijar_2018_12_015
crossref_primary_10_1155_2018_7525786
crossref_primary_10_2166_ws_2025_069
crossref_primary_10_1016_j_ijar_2021_07_003
crossref_primary_10_7717_peerj_cs_238
crossref_primary_10_1016_j_eswa_2019_112837
crossref_primary_10_1016_j_patcog_2012_10_001
crossref_primary_10_1007_s10462_022_10325_y
crossref_primary_10_1016_j_patcog_2012_06_005
crossref_primary_10_1016_j_eswa_2009_12_077
crossref_primary_10_3233_IDA_205670
crossref_primary_10_1016_j_ymssp_2016_03_022
crossref_primary_10_1016_j_ins_2017_03_001
crossref_primary_10_3233_IDA_150316
crossref_primary_10_1016_j_fss_2015_07_019
crossref_primary_10_1016_j_ins_2021_02_017
crossref_primary_10_1016_j_inffus_2022_11_008
crossref_primary_10_1109_TFUZZ_2017_2659764
crossref_primary_10_1016_j_fss_2017_11_003
crossref_primary_10_1007_s00530_017_0579_0
crossref_primary_10_1016_j_cie_2025_111067
crossref_primary_10_1016_j_patcog_2015_01_019
crossref_primary_10_1109_TIM_2025_3557120
crossref_primary_10_1016_j_asoc_2022_109619
crossref_primary_10_1016_j_eswa_2024_125246
crossref_primary_10_1016_j_eswa_2024_125369
crossref_primary_10_1016_j_knosys_2024_112948
crossref_primary_10_1016_j_ijar_2021_03_008
crossref_primary_10_1016_j_csda_2010_09_013
crossref_primary_10_1016_j_eswa_2021_116279
crossref_primary_10_1007_s00521_014_1648_3
crossref_primary_10_1016_j_patcog_2012_02_003
crossref_primary_10_1016_j_inffus_2022_12_025
crossref_primary_10_1007_s10844_016_0396_5
crossref_primary_10_1007_s10489_020_02159_4
crossref_primary_10_1007_s10489_024_05813_3
crossref_primary_10_1111_j_1468_0394_2012_00645_x
crossref_primary_10_1016_j_knosys_2013_08_005
crossref_primary_10_1016_j_ijar_2012_01_009
crossref_primary_10_1016_j_ins_2021_04_008
crossref_primary_10_1002_int_22195
crossref_primary_10_1007_s11432_020_3082_9
crossref_primary_10_1109_TKDE_2021_3049511
crossref_primary_10_1016_j_cam_2024_116345
crossref_primary_10_3390_app132212511
crossref_primary_10_1109_ACCESS_2020_2983319
crossref_primary_10_1007_s11548_015_1151_z
crossref_primary_10_1016_j_patcog_2024_111261
crossref_primary_10_1118_1_3651610
crossref_primary_10_1016_j_engappai_2012_07_002
crossref_primary_10_1016_j_ijar_2022_10_001
crossref_primary_10_1016_j_cja_2023_09_015
crossref_primary_10_1016_j_proeng_2014_11_453
crossref_primary_10_1016_j_fss_2015_06_017
crossref_primary_10_1109_JBHI_2023_3240297
crossref_primary_10_1016_j_ins_2019_11_009
crossref_primary_10_1016_j_ins_2013_04_008
crossref_primary_10_1016_j_ijar_2015_12_004
crossref_primary_10_1007_s10278_016_9890_0
crossref_primary_10_1109_TNNLS_2015_2480772
crossref_primary_10_1016_j_knosys_2016_01_023
crossref_primary_10_1016_j_patcog_2015_02_018
crossref_primary_10_1016_j_chemolab_2014_05_004
crossref_primary_10_1016_j_knosys_2024_111770
crossref_primary_10_1002_isaf_1334
crossref_primary_10_1007_s00500_019_04422_4
crossref_primary_10_1016_j_patcog_2025_111676
crossref_primary_10_1007_s12530_017_9191_y
crossref_primary_10_1016_j_ins_2022_11_114
crossref_primary_10_1016_j_ijar_2025_109364
crossref_primary_10_2166_hydro_2015_021
crossref_primary_10_3390_info8020049
crossref_primary_10_1109_TSMC_2024_3444811
crossref_primary_10_1016_j_knosys_2015_08_007
crossref_primary_10_1109_TFUZZ_2016_2540068
crossref_primary_10_1016_j_knosys_2015_06_022
crossref_primary_10_1109_TGRS_2011_2169075
crossref_primary_10_1007_s10489_016_0870_3
crossref_primary_10_1016_j_patcog_2024_111108
crossref_primary_10_1007_s10489_021_02378_3
crossref_primary_10_1002_wics_1480
crossref_primary_10_1007_s00500_013_1146_z
crossref_primary_10_1016_j_patcog_2016_04_005
crossref_primary_10_1007_s40314_025_03293_w
crossref_primary_10_1109_TAI_2023_3316194
crossref_primary_10_1109_TFUZZ_2025_3576588
crossref_primary_10_1016_j_ijar_2009_02_001
crossref_primary_10_1016_j_asoc_2010_09_009
crossref_primary_10_1016_j_media_2024_103223
crossref_primary_10_1109_TFUZZ_2011_2106216
crossref_primary_10_1007_s00357_021_09409_1
crossref_primary_10_1016_j_knosys_2018_04_029
crossref_primary_10_1007_s10489_019_01514_4
crossref_primary_10_1016_j_asoc_2021_107435
crossref_primary_10_1016_j_eswa_2024_124535
crossref_primary_10_1016_j_knosys_2022_109937
crossref_primary_10_1016_j_knosys_2016_01_035
crossref_primary_10_1016_j_engappai_2019_103411
crossref_primary_10_1109_TFUZZ_2019_2930027
crossref_primary_10_1007_s00357_015_9181_3
crossref_primary_10_1145_3638061
crossref_primary_10_1016_j_fss_2022_08_003
crossref_primary_10_1016_j_inffus_2012_04_002
crossref_primary_10_1016_j_media_2016_05_007
crossref_primary_10_1109_TBME_2017_2688453
crossref_primary_10_1109_JAS_2022_105458
crossref_primary_10_1016_j_physa_2019_122289
crossref_primary_10_1016_j_neucom_2019_07_006
crossref_primary_10_1007_s10489_013_0453_5
crossref_primary_10_1016_j_knosys_2019_105426
crossref_primary_10_1016_j_cor_2020_104979
crossref_primary_10_1016_j_inffus_2024_102609
crossref_primary_10_1016_j_ins_2023_01_091
crossref_primary_10_1016_j_patcog_2014_01_011
crossref_primary_10_1016_j_fss_2018_11_006
crossref_primary_10_1016_j_proeng_2015_08_979
crossref_primary_10_1016_j_asoc_2016_10_001
crossref_primary_10_1016_j_ins_2014_02_073
crossref_primary_10_1016_j_ins_2025_122329
crossref_primary_10_1016_j_asoc_2021_107658
crossref_primary_10_1016_j_ijar_2023_109008
crossref_primary_10_1016_j_patrec_2012_10_013
crossref_primary_10_1016_j_ijar_2023_109007
crossref_primary_10_1016_j_media_2014_06_014
crossref_primary_10_1016_j_fss_2019_09_010
crossref_primary_10_1016_j_ijar_2012_10_003
crossref_primary_10_1016_j_knosys_2017_10_012
crossref_primary_10_1016_j_patcog_2010_01_001
crossref_primary_10_1016_j_fss_2024_109168
crossref_primary_10_1016_j_knosys_2016_05_043
crossref_primary_10_1002_widm_34
crossref_primary_10_1016_j_knosys_2015_11_014
crossref_primary_10_1016_j_patcog_2020_107751
crossref_primary_10_1002_int_21723
crossref_primary_10_3233_JIFS_210991
crossref_primary_10_1016_j_ins_2009_01_009
crossref_primary_10_1016_j_inffus_2024_102736
crossref_primary_10_1155_2015_265135
crossref_primary_10_1007_s11047_015_9489_2
crossref_primary_10_1016_j_ifacol_2021_11_203
crossref_primary_10_1002_int_22231
crossref_primary_10_3390_rs10020237
crossref_primary_10_1016_j_ijar_2023_109075
crossref_primary_10_1016_j_neucom_2009_11_020
crossref_primary_10_1016_j_csda_2010_09_021
crossref_primary_10_1016_j_neucom_2013_12_009
crossref_primary_10_1016_j_knosys_2016_07_029
crossref_primary_10_1016_j_neucom_2017_01_034
crossref_primary_10_1016_j_ijar_2009_03_006
crossref_primary_10_1016_j_ijepes_2019_105624
crossref_primary_10_1016_j_jksuci_2023_101904
crossref_primary_10_1016_j_engfailanal_2024_108371
crossref_primary_10_1016_j_patrec_2009_04_008
crossref_primary_10_1109_TFUZZ_2017_2718484
crossref_primary_10_1016_j_patrec_2011_10_011
crossref_primary_10_1016_j_ymssp_2012_06_023
crossref_primary_10_1016_j_patcog_2016_05_005
crossref_primary_10_1109_TCYB_2014_2332037
crossref_primary_10_1109_TSMC_2022_3205365
crossref_primary_10_3390_e21050443
crossref_primary_10_1016_j_knosys_2014_11_013
crossref_primary_10_1016_j_knosys_2014_11_010
crossref_primary_10_1016_j_ijar_2013_05_007
crossref_primary_10_1016_j_patcog_2015_08_009
crossref_primary_10_1016_j_ijar_2025_109538
crossref_primary_10_1007_s13042_024_02139_x
crossref_primary_10_1016_j_ijar_2022_01_011
crossref_primary_10_1016_j_ijar_2025_109534
crossref_primary_10_1016_j_fss_2024_109135
crossref_primary_10_1016_j_ijar_2013_05_005
crossref_primary_10_1016_j_ijar_2015_03_001
crossref_primary_10_1016_j_knosys_2017_11_023
crossref_primary_10_1016_j_ijar_2011_06_003
crossref_primary_10_1109_TFUZZ_2018_2869125
crossref_primary_10_1109_TIP_2018_2872908
crossref_primary_10_1155_2014_319264
crossref_primary_10_1007_s10700_020_09344_7
crossref_primary_10_1016_j_patcog_2023_109846
crossref_primary_10_1016_j_ijar_2025_109400
crossref_primary_10_1016_j_ins_2020_04_014
crossref_primary_10_1007_s10489_019_01576_4
crossref_primary_10_1007_s41066_023_00410_0
crossref_primary_10_1016_j_knosys_2020_106643
crossref_primary_10_1016_j_jprocont_2009_09_002
crossref_primary_10_1016_j_cja_2021_04_020
crossref_primary_10_1016_j_patcog_2015_10_001
crossref_primary_10_1016_j_ijar_2010_04_007
crossref_primary_10_1016_j_ijar_2010_04_005
Cites_doi 10.1016/0167-8655(96)00026-8
10.1016/S0031-3203(99)00110-7
10.1016/0888-613X(96)00092-8
10.1016/0167-8655(96)00025-6
10.1016/0004-3702(94)90026-4
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.ijar.2007.07.008
10.1016/j.patcog.2006.04.008
10.1109/TSMCB.2002.806496
10.1007/BF01908073
10.1016/j.patrec.2003.09.008
10.1016/j.ijar.2005.06.008
10.1023/A:1011219918340
10.1080/01969727308546047
10.1109/91.531779
10.1016/j.ijar.2004.05.003
10.1016/j.csda.2006.04.030
10.1016/0165-0114(87)90089-3
10.1016/0167-8655(96)00039-6
10.1109/34.55104
10.1016/0031-3203(89)90066-6
10.1109/91.227387
10.1109/91.531780
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patcog.2007.08.014
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 1397
ExternalDocumentID 20009741
10_1016_j_patcog_2007_08_014
S0031320307004062
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-38dac5a3a99b38c75e50f364b75d44c111a13d79c5e77412ef996156f47b80f83
ISICitedReferencesCount 320
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000253124500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Mon Jul 21 09:15:41 EDT 2025
Tue Nov 18 22:00:54 EST 2025
Sat Nov 29 03:52:01 EST 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Belief functions
Cluster validity
Evidence theory
Dempster–Shafer theory
Robustness
Clustering
Unsupervised learning
Automatic classification
Belief function
Dempster-Shafer theory
Signal classification
Credal approach
Fuzzy algorithm
Dempster Shafer theory
Objective function
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-38dac5a3a99b38c75e50f364b75d44c111a13d79c5e77412ef996156f47b80f83
PageCount 14
ParticipantIDs pascalfrancis_primary_20009741
crossref_primary_10_1016_j_patcog_2007_08_014
crossref_citationtrail_10_1016_j_patcog_2007_08_014
elsevier_sciencedirect_doi_10_1016_j_patcog_2007_08_014
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Pattern recognition
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Yager (bib18) 1996; 14
Dubois, Prade (bib5) 1988
Denœux, Masson (bib10) 2003
Bloch (bib33) 1996; 17
Klir, Wierman (bib30) 1998
Smets, Kennes (bib14) 1994; 66
Ménard, Demko, Loonis (bib24) 2000; 33
Masson, Denœux (bib22) 2004; 25
Döring, Lesot, Kruse (bib19) 2006; 51
Bezdek (bib27) 1974; 3
Anderson (bib31) 1935; 59
Lingras (bib26) 2001; 16
Fisher (bib32) 1936; 7
Dunn (bib2) 1974
Denœux, Masson (bib11) 2004; 34
Shafer (bib13) 1976
Cobb, Shenoy (bib16) 2006; 41
Krishnapuram, Keller (bib4) 1993; 1
Hathaway, Bezdek, Davenport (bib7) 1996; 17
Davé (bib28) 1996; 17
Bezdek (bib1) 1981
I. Bloch, Defining belief functions using mathematical morphology—application to image fusion under imprecision, Int. J. Approximate Reasoning, 2007, in press, doi
S. Sen, R.N. Davé, Clustering relational data containing noise and outliers, In: FUZZ’IEEE 98, 1998, pp. 1411–1416.
Windham (bib25) 1985; 2
Smets (bib12) 1998; vol. 1
Hathaway, Davenport, Bezdek (bib3) 1989; 22
Smets (bib15) 1990; 12
De Caceres, Oliva, Font (bib9) 2006; 39
.
Barni, Cappellini, Mecocci (bib20) 1996; 4
Ramer (bib29) 1987; 24
Smets (bib17) 2005; 38
Krishnapuram, Keller (bib21) 1996; 4
Davé (bib6) 1991; 12
Bezdek, Keller, Krishnapuram, Pal (bib23) 1999
Smets (10.1016/j.patcog.2007.08.014_bib12) 1998; vol. 1
Smets (10.1016/j.patcog.2007.08.014_bib15) 1990; 12
Masson (10.1016/j.patcog.2007.08.014_bib22) 2004; 25
Dunn (10.1016/j.patcog.2007.08.014_bib2) 1974
Ramer (10.1016/j.patcog.2007.08.014_bib29) 1987; 24
Yager (10.1016/j.patcog.2007.08.014_bib18) 1996; 14
Smets (10.1016/j.patcog.2007.08.014_bib17) 2005; 38
10.1016/j.patcog.2007.08.014_bib8
Lingras (10.1016/j.patcog.2007.08.014_bib26) 2001; 16
Shafer (10.1016/j.patcog.2007.08.014_bib13) 1976
Davé (10.1016/j.patcog.2007.08.014_bib28) 1996; 17
Ménard (10.1016/j.patcog.2007.08.014_bib24) 2000; 33
Windham (10.1016/j.patcog.2007.08.014_bib25) 1985; 2
Krishnapuram (10.1016/j.patcog.2007.08.014_bib4) 1993; 1
Davé (10.1016/j.patcog.2007.08.014_bib6) 1991; 12
Hathaway (10.1016/j.patcog.2007.08.014_bib3) 1989; 22
Cobb (10.1016/j.patcog.2007.08.014_bib16) 2006; 41
Barni (10.1016/j.patcog.2007.08.014_bib20) 1996; 4
Anderson (10.1016/j.patcog.2007.08.014_bib31) 1935; 59
Fisher (10.1016/j.patcog.2007.08.014_bib32) 1936; 7
Klir (10.1016/j.patcog.2007.08.014_bib30) 1998
De Caceres (10.1016/j.patcog.2007.08.014_bib9) 2006; 39
Bezdek (10.1016/j.patcog.2007.08.014_bib23) 1999
Krishnapuram (10.1016/j.patcog.2007.08.014_bib21) 1996; 4
Bloch (10.1016/j.patcog.2007.08.014_bib33) 1996; 17
Smets (10.1016/j.patcog.2007.08.014_bib14) 1994; 66
Denœux (10.1016/j.patcog.2007.08.014_bib10) 2003
Dubois (10.1016/j.patcog.2007.08.014_bib5) 1988
Döring (10.1016/j.patcog.2007.08.014_bib19) 2006; 51
Hathaway (10.1016/j.patcog.2007.08.014_bib7) 1996; 17
Bezdek (10.1016/j.patcog.2007.08.014_bib27) 1974; 3
Bezdek (10.1016/j.patcog.2007.08.014_bib1) 1981
10.1016/j.patcog.2007.08.014_bib34
Denœux (10.1016/j.patcog.2007.08.014_bib11) 2004; 34
References_xml – volume: 22
  start-page: 205
  year: 1989
  end-page: 212
  ident: bib3
  article-title: Relational duals of the
  publication-title: Pattern Recognition
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib32
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– volume: 17
  start-page: 607
  year: 1996
  end-page: 612
  ident: bib7
  article-title: On relational versions of
  publication-title: Pattern Recognition Lett.
– year: 1976
  ident: bib13
  article-title: A Mathematical Theory of Evidence
– volume: 38
  start-page: 133
  year: 2005
  end-page: 147
  ident: bib17
  article-title: Decision making in the TBM: the necessity of the pignistic transformation
  publication-title: Int. J. Approximate Reasoning
– volume: 59
  start-page: 2
  year: 1935
  end-page: 5
  ident: bib31
  article-title: The irises of the Gasp peninsula
  publication-title: Bull. Am. Iris Soc.
– volume: 17
  start-page: 613
  year: 1996
  end-page: 623
  ident: bib28
  article-title: Validating fuzzy partition obtained through
  publication-title: Pattern Recognition Lett.
– volume: 39
  start-page: 2010
  year: 2006
  end-page: 2024
  ident: bib9
  article-title: On relational possibilistic clustering
  publication-title: Pattern Recognition
– volume: 51
  start-page: 192
  year: 2006
  end-page: 214
  ident: bib19
  article-title: Data analysis with fuzzy clustering methods
  publication-title: Comput. Data Anal.
– reference: I. Bloch, Defining belief functions using mathematical morphology—application to image fusion under imprecision, Int. J. Approximate Reasoning, 2007, in press, doi:
– volume: 12
  start-page: 657
  year: 1991
  end-page: 664
  ident: bib6
  article-title: Clustering relational data containing noise and outliers
  publication-title: Pattern Recognition Lett.
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: bib4
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: S. Sen, R.N. Davé, Clustering relational data containing noise and outliers, In: FUZZ’IEEE 98, 1998, pp. 1411–1416.
– volume: 12
  start-page: 447
  year: 1990
  end-page: 458
  ident: bib15
  article-title: The combination of evidence in the Transferable Belief Model
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 41
  start-page: 314
  year: 2006
  end-page: 330
  ident: bib16
  article-title: On the plausibility transformation method for translating belief function models to probability models
  publication-title: Int. J. Approximate Reasoning
– volume: 4
  start-page: 385
  year: 1996
  end-page: 393
  ident: bib21
  article-title: The possibilistic
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 34
  start-page: 95
  year: 2004
  end-page: 109
  ident: bib11
  article-title: EVCLUS: EVidential CLUStering of proximity data
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
– year: 1999
  ident: bib23
  article-title: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
– volume: 33
  start-page: 1219
  year: 2000
  end-page: 1237
  ident: bib24
  article-title: The fuzzy
  publication-title: Pattern Recognition
– volume: 4
  start-page: 393
  year: 1996
  end-page: 396
  ident: bib20
  article-title: Comments on a possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 16
  start-page: 215
  year: 2001
  end-page: 228
  ident: bib26
  article-title: Unsupervised rough set classification using GAs
  publication-title: J. Intelligent Inf. Syst.
– volume: 66
  start-page: 191
  year: 1994
  end-page: 243
  ident: bib14
  article-title: The Transferable Belief Model
  publication-title: Artif. Intell.
– volume: vol. 1
  start-page: 267
  year: 1998
  end-page: 301
  ident: bib12
  article-title: The transferable Belief Model for quantified belief representation
  publication-title: Hanbook of Defeasible Reasoning and Uncertainty Management Systems
– year: 1998
  ident: bib30
  article-title: Uncertainty-based Information, Elements of Generalized Inf. Theory
– volume: 24
  start-page: 183
  year: 1987
  end-page: 196
  ident: bib29
  article-title: Uniqueness of information measure in the theory of evidence
  publication-title: Fuzzy Sets and Systems
– volume: 25
  start-page: 163
  year: 2004
  end-page: 171
  ident: bib22
  article-title: Clustering interval-valued data using belief functions
  publication-title: Pattern Recognition Lett.
– volume: 3
  start-page: 58
  year: 1974
  end-page: 73
  ident: bib27
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
– volume: 17
  start-page: 905
  year: 1996
  end-page: 919
  ident: bib33
  article-title: Some aspects of Dempster–Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account
  publication-title: Pattern Recognition Lett.
– volume: 14
  start-page: 27
  year: 1996
  end-page: 153
  ident: bib18
  article-title: On the normalization of fuzzy belief structure
  publication-title: Int. J. Approximate Reasoning
– year: 1981
  ident: bib1
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– start-page: 32
  year: 1974
  end-page: 57
  ident: bib2
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters
  publication-title: J. Cybern.
– year: 1988
  ident: bib5
  article-title: Possibility Theory: An Approach to Computerized Processing of Uncertainty
– start-page: 291
  year: 2003
  end-page: 302
  ident: bib10
  article-title: Clustering of proximity data using belief functions
  publication-title: Intelligent Systems for Information Processing from Representation to Application
– reference: .
– volume: 2
  start-page: 157
  year: 1985
  end-page: 172
  ident: bib25
  article-title: Numerical classification of proximity data with assignment measure
  publication-title: J. Classification
– year: 1981
  ident: 10.1016/j.patcog.2007.08.014_bib1
– volume: 17
  start-page: 613
  year: 1996
  ident: 10.1016/j.patcog.2007.08.014_bib28
  article-title: Validating fuzzy partition obtained through c-shell clustering
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/0167-8655(96)00026-8
– start-page: 291
  year: 2003
  ident: 10.1016/j.patcog.2007.08.014_bib10
  article-title: Clustering of proximity data using belief functions
– volume: 33
  start-page: 1219
  year: 2000
  ident: 10.1016/j.patcog.2007.08.014_bib24
  article-title: The fuzzy c+2 means: solving the ambiguity rejection in clustering
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(99)00110-7
– volume: 14
  start-page: 27
  year: 1996
  ident: 10.1016/j.patcog.2007.08.014_bib18
  article-title: On the normalization of fuzzy belief structure
  publication-title: Int. J. Approximate Reasoning
  doi: 10.1016/0888-613X(96)00092-8
– year: 1988
  ident: 10.1016/j.patcog.2007.08.014_bib5
– volume: 17
  start-page: 607
  year: 1996
  ident: 10.1016/j.patcog.2007.08.014_bib7
  article-title: On relational versions of c-means algorithm
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/0167-8655(96)00025-6
– volume: vol. 1
  start-page: 267
  year: 1998
  ident: 10.1016/j.patcog.2007.08.014_bib12
  article-title: The transferable Belief Model for quantified belief representation
– volume: 66
  start-page: 191
  year: 1994
  ident: 10.1016/j.patcog.2007.08.014_bib14
  article-title: The Transferable Belief Model
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(94)90026-4
– year: 1998
  ident: 10.1016/j.patcog.2007.08.014_bib30
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/j.patcog.2007.08.014_bib32
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: 10.1016/j.patcog.2007.08.014_bib34
  doi: 10.1016/j.ijar.2007.07.008
– volume: 39
  start-page: 2010
  year: 2006
  ident: 10.1016/j.patcog.2007.08.014_bib9
  article-title: On relational possibilistic clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.04.008
– volume: 34
  start-page: 95
  issue: 1
  year: 2004
  ident: 10.1016/j.patcog.2007.08.014_bib11
  article-title: EVCLUS: EVidential CLUStering of proximity data
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2002.806496
– volume: 2
  start-page: 157
  year: 1985
  ident: 10.1016/j.patcog.2007.08.014_bib25
  article-title: Numerical classification of proximity data with assignment measure
  publication-title: J. Classification
  doi: 10.1007/BF01908073
– start-page: 32
  year: 1974
  ident: 10.1016/j.patcog.2007.08.014_bib2
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters
  publication-title: J. Cybern.
– volume: 25
  start-page: 163
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2007.08.014_bib22
  article-title: Clustering interval-valued data using belief functions
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/j.patrec.2003.09.008
– year: 1976
  ident: 10.1016/j.patcog.2007.08.014_bib13
– volume: 41
  start-page: 314
  issue: 3
  year: 2006
  ident: 10.1016/j.patcog.2007.08.014_bib16
  article-title: On the plausibility transformation method for translating belief function models to probability models
  publication-title: Int. J. Approximate Reasoning
  doi: 10.1016/j.ijar.2005.06.008
– volume: 16
  start-page: 215
  year: 2001
  ident: 10.1016/j.patcog.2007.08.014_bib26
  article-title: Unsupervised rough set classification using GAs
  publication-title: J. Intelligent Inf. Syst.
  doi: 10.1023/A:1011219918340
– volume: 3
  start-page: 58
  year: 1974
  ident: 10.1016/j.patcog.2007.08.014_bib27
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546047
– ident: 10.1016/j.patcog.2007.08.014_bib8
– volume: 4
  start-page: 385
  issue: 3
  year: 1996
  ident: 10.1016/j.patcog.2007.08.014_bib21
  article-title: The possibilistic c-means algorithm: insights and recommendations
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.531779
– year: 1999
  ident: 10.1016/j.patcog.2007.08.014_bib23
– volume: 38
  start-page: 133
  issue: 2
  year: 2005
  ident: 10.1016/j.patcog.2007.08.014_bib17
  article-title: Decision making in the TBM: the necessity of the pignistic transformation
  publication-title: Int. J. Approximate Reasoning
  doi: 10.1016/j.ijar.2004.05.003
– volume: 51
  start-page: 192
  year: 2006
  ident: 10.1016/j.patcog.2007.08.014_bib19
  article-title: Data analysis with fuzzy clustering methods
  publication-title: Comput. Data Anal.
  doi: 10.1016/j.csda.2006.04.030
– volume: 24
  start-page: 183
  year: 1987
  ident: 10.1016/j.patcog.2007.08.014_bib29
  article-title: Uniqueness of information measure in the theory of evidence
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(87)90089-3
– volume: 17
  start-page: 905
  issue: 8
  year: 1996
  ident: 10.1016/j.patcog.2007.08.014_bib33
  article-title: Some aspects of Dempster–Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/0167-8655(96)00039-6
– volume: 12
  start-page: 657
  year: 1991
  ident: 10.1016/j.patcog.2007.08.014_bib6
  article-title: Clustering relational data containing noise and outliers
  publication-title: Pattern Recognition Lett.
– volume: 12
  start-page: 447
  issue: 5
  year: 1990
  ident: 10.1016/j.patcog.2007.08.014_bib15
  article-title: The combination of evidence in the Transferable Belief Model
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.55104
– volume: 22
  start-page: 205
  year: 1989
  ident: 10.1016/j.patcog.2007.08.014_bib3
  article-title: Relational duals of the c-means clustering algorithms
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(89)90066-6
– volume: 59
  start-page: 2
  year: 1935
  ident: 10.1016/j.patcog.2007.08.014_bib31
  article-title: The irises of the Gasp peninsula
  publication-title: Bull. Am. Iris Soc.
– volume: 1
  start-page: 98
  issue: 2
  year: 1993
  ident: 10.1016/j.patcog.2007.08.014_bib4
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 4
  start-page: 393
  issue: 3
  year: 1996
  ident: 10.1016/j.patcog.2007.08.014_bib20
  article-title: Comments on a possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.531780
SSID ssj0017142
Score 2.4355018
Snippet A new clustering method for object data, called ECM (evidential c-means) is introduced, in the theoretical framework of belief functions. It is based on the...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1384
SubjectTerms Applied sciences
Belief functions
Cluster validity
Clustering
Dempster–Shafer theory
Evidence theory
Exact sciences and technology
Information, signal and communications theory
Robustness
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Unsupervised learning
Title ECM: An evidential version of the fuzzy c-means algorithm
URI https://dx.doi.org/10.1016/j.patcog.2007.08.014
Volume 41
WOSCitedRecordID wos000253124500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBaj3cNg7D7WXYoetqeiYFtSJPUtZCntoKWwDPJmbFnqWlInJE7p-ut7LMl2Qju6DfbiGBPbWOfTdy46Ogehz9xIFTERkYJSTlgODorM4ayvY2sja2B-MddsQpycyMlEnYYtBEvXTkCUpby-VvP_Kmq4BsKut87-hbjbh8IFOAehwxHEDsc_EvxoeByifcZ1DK3qmPiVD4s1GQF2dXPza0-TSwOaai-bns0W59XPy3VL9dQV3qw3u4QMo269_hgM7pB0X3va5NCvtk_dj-zW6b8CpQ35F0VXTsONexshBrmWmeLiXs3ely7RyHEpjQlNIk9PxtOnFJSACbbBr76wVcARWyPLmPrucEHx1rbovaTu4wsXvTkop9lZKDspe1HMOiXWphZ-99UoHZcBQdXqeTsRXAFpbw-ORpNv7RqTiJmvJR--o9lY6bL_7r7rd4bL03m2hOlkfR-UNeNk_AI9C14FHng0vESPTPkKPW86duBA4K-RAnDs40GJO2jgAA08sxiggR00cIAGbqHxBv04GI2HhyQ0zyCa0n5FqCwyzTOaKZVTqQU3PLK0z3LBC8Y0qLgspoVQmhvwAOLEWPB8wZm3TOQyspK-RVvlrDTvELYwewvQqMowymwSSWszwTKwrpTRlssdRJuRSXWoLF83OJmmTQrhRerHs256KtK672nMdhBp75r7yioP_F80g54G69BbfSng5IE7dzdk1L4ucduYWPz-nx_9AT3pJsxHtFUtVuYTeqyvqvPlYjcg7haMHZAW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECM%3A+An+evidential+version+of+the+fuzzy+c-means+algorithm&rft.jtitle=Pattern+recognition&rft.au=Masson%2C+Marie-H%C3%A9l%C3%A8ne&rft.au=Den%C5%93ux%2C+T.&rft.date=2008-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=41&rft.issue=4&rft.spage=1384&rft.epage=1397&rft_id=info:doi/10.1016%2Fj.patcog.2007.08.014&rft.externalDocID=S0031320307004062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon