ECM: An evidential version of the fuzzy c-means algorithm
A new clustering method for object data, called ECM (evidential c-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 41; číslo 4; s. 1384 - 1397 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.04.2008
Elsevier Science |
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new clustering method for object data, called ECM (evidential
c-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function is minimized using an FCM-like algorithm. A validity index allowing the determination of the proper number of clusters is also proposed. Experiments with synthetic and real data sets show that the proposed algorithm can be considered as a promising tool in the field of exploratory statistics. |
|---|---|
| ISSN: | 0031-3203 1873-5142 |
| DOI: | 10.1016/j.patcog.2007.08.014 |