ECM: An evidential version of the fuzzy c-means algorithm

A new clustering method for object data, called ECM (evidential c-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 41; číslo 4; s. 1384 - 1397
Hlavní autoři: Masson, Marie-Hélène, Denœux, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.04.2008
Elsevier Science
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new clustering method for object data, called ECM (evidential c-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function is minimized using an FCM-like algorithm. A validity index allowing the determination of the proper number of clusters is also proposed. Experiments with synthetic and real data sets show that the proposed algorithm can be considered as a promising tool in the field of exploratory statistics.
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2007.08.014