sMLACF: a generalized expectation-maximization algorithm for TOF-PET to reconstruct the activity and attenuation simultaneously

The 'simultaneous maximum-likelihood attenuation correction factors' (sMLACF) algorithm presented here, is an iterative algorithm to calculate the maximum-likelihood estimate of the activity λ and the attenuation factors a in time-of-flight positron emission tomography, and this from emiss...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physics in medicine & biology Ročník 62; číslo 21; s. 8283
Hlavní autori: Salvo, Koen, Defrise, Michel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 12.10.2017
Predmet:
ISSN:1361-6560, 1361-6560
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The 'simultaneous maximum-likelihood attenuation correction factors' (sMLACF) algorithm presented here, is an iterative algorithm to calculate the maximum-likelihood estimate of the activity λ and the attenuation factors a in time-of-flight positron emission tomography, and this from emission data only. Hence sMLACF is an alternative to the MLACF algorithm. sMLACF is derived using the generalized expectation-maximization principle by introducing an appropriate set of complete data. The resulting iteration step yields a simultaneous update of λ and a which, in addition, enforces in a natural way the constraints [Formula: see text] where [Formula: see text] is a fixed lower bound that ensures the boundedness of the reconstructed activities. Some properties-like the monotonic increase of the likelihood and the asymptotic regularity of the estimated [Formula: see text]-of sMLACF are proven. Comparison of sMLACF with MLACF for two data sets reveals that both algorithms show very similar results, although sMLACF converges slower.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1361-6560
1361-6560
DOI:10.1088/1361-6560/aa82ea