Accuracy Assessment of Numerical Dosimetry for the Evaluation of Human Exposure to Electric Vehicle Inductive Charging Systems

In this article, we discuss numerical aspects related to the accuracy and the computational efficiency of numerical dosimetric simulations, performed in the context of human exposure to static inductive charging systems of electric vehicles. Two alternative numerical methods based on electric vector...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on electromagnetic compatibility Ročník 62; číslo 5; s. 1939 - 1950
Hlavní autoři: Arduino, Alessandro, Bottauscio, Oriano, Chiampi, Mario, Giaccone, Luca, Liorni, Ilaria, Kuster, Niels, Zilberti, Luca, Zucca, Mauro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9375, 1558-187X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we discuss numerical aspects related to the accuracy and the computational efficiency of numerical dosimetric simulations, performed in the context of human exposure to static inductive charging systems of electric vehicles. Two alternative numerical methods based on electric vector potential and electric scalar potential formulations, respectively, are here considered for the electric field computation in highly detailed anatomical human models. The results obtained by the numerical implementation of both approaches are discussed in terms of compliance assessment with ICNIRP guidelines limits for human exposure to electromagnetic fields. In particular, different strategies for smoothing localized unphysical outliers are compared, including novel techniques based on statistical considerations. The outlier removal is particularly relevant when comparison with basic restrictions is required to define the safety of electromagnetic fields exposure. The analysis demonstrates that it is not possible to derive general conclusions about the most robust method for dosimetric solutions. Nevertheless, the combined use of both formulations, together with the use of an algorithm for outliers removal based on a statistical approach, allows to determine final results to be compared with reference limits with a significant level of reliability.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9375
1558-187X
DOI:10.1109/TEMC.2019.2954111