Lossless compression of map contours by context tree modeling of chain codes
We consider lossless compression of digital contours in map images. The problem is attacked by the use of context-based statistical modeling and entropy coding of the chain codes. We propose to generate an optimal n-ary incomplete context tree by first constructing a complete tree up to a predefined...
Uložené v:
| Vydané v: | Pattern recognition Ročník 40; číslo 3; s. 944 - 952 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.03.2007
Elsevier Science |
| Predmet: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider lossless compression of digital contours in map images. The problem is attacked by the use of context-based statistical modeling and entropy coding of the chain codes. We propose to generate an optimal
n-ary incomplete context tree by first constructing a complete tree up to a predefined depth and creating the optimal tree by pruning out nodes that do not provide improvement in compression. We apply this method for both vector and raster maps. Experiments show that the proposed method gives lower bit rates than the existing methods of chain codes compression for the set of test data. |
|---|---|
| ISSN: | 0031-3203 1873-5142 |
| DOI: | 10.1016/j.patcog.2006.08.005 |