Lossless compression of map contours by context tree modeling of chain codes

We consider lossless compression of digital contours in map images. The problem is attacked by the use of context-based statistical modeling and entropy coding of the chain codes. We propose to generate an optimal n-ary incomplete context tree by first constructing a complete tree up to a predefined...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 40; číslo 3; s. 944 - 952
Hlavní autori: Akimov, Alexander, Kolesnikov, Alexander, Fränti, Pasi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.03.2007
Elsevier Science
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider lossless compression of digital contours in map images. The problem is attacked by the use of context-based statistical modeling and entropy coding of the chain codes. We propose to generate an optimal n-ary incomplete context tree by first constructing a complete tree up to a predefined depth and creating the optimal tree by pruning out nodes that do not provide improvement in compression. We apply this method for both vector and raster maps. Experiments show that the proposed method gives lower bit rates than the existing methods of chain codes compression for the set of test data.
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2006.08.005