Weights of holomorphic extension and restriction

Let D ⊂⊂ C n be a domain and D′ ⊂ D a closed complex submanifold. A normalized weight function ϕ on D′ is called weight of restriction, if the restriction of any L 2-holomorphic function f on D to D′ is contained in L 2( D′, ϕ), and it is called a weight of extension, if any holomorphic function in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal de mathématiques pures et appliquées Ročník 77; číslo 7; s. 697 - 719
Hlavní autoři: Diederich, K., Herbort, G., Michel, V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Paris Elsevier SAS 01.09.1998
Elsevier
Témata:
ISSN:0021-7824
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let D ⊂⊂ C n be a domain and D′ ⊂ D a closed complex submanifold. A normalized weight function ϕ on D′ is called weight of restriction, if the restriction of any L 2-holomorphic function f on D to D′ is contained in L 2( D′, ϕ), and it is called a weight of extension, if any holomorphic function in L 2( D′, ϕ) can be extended to a L 2-holomorphic function on D. Properties of the families of weights of restriction and weights of extension and relations between them are studied in this article. An application to the boundary behavior of the Bergman metric is given.
ISSN:0021-7824
DOI:10.1016/S0021-7824(98)80005-6