Weights of holomorphic extension and restriction
Let D ⊂⊂ C n be a domain and D′ ⊂ D a closed complex submanifold. A normalized weight function ϕ on D′ is called weight of restriction, if the restriction of any L 2-holomorphic function f on D to D′ is contained in L 2( D′, ϕ), and it is called a weight of extension, if any holomorphic function in...
Uloženo v:
| Vydáno v: | Journal de mathématiques pures et appliquées Ročník 77; číslo 7; s. 697 - 719 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Paris
Elsevier SAS
01.09.1998
Elsevier |
| Témata: | |
| ISSN: | 0021-7824 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
D ⊂⊂
C
n be a domain and
D′ ⊂
D a closed complex submanifold. A normalized weight function ϕ on
D′ is called weight of restriction, if the restriction of any
L
2-holomorphic function
f on
D to
D′ is contained in
L
2(
D′,
ϕ), and it is called a weight of extension, if any holomorphic function in
L
2(
D′,
ϕ) can be extended to a
L
2-holomorphic function on
D. Properties of the families of weights of restriction and weights of extension and relations between them are studied in this article. An application to the boundary behavior of the Bergman metric is given. |
|---|---|
| ISSN: | 0021-7824 |
| DOI: | 10.1016/S0021-7824(98)80005-6 |