On the orbit of invariant subspaces of linear operators in finite-dimensional spaces (new proof of a Halmos's result)

P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant of A. His proof was based on a generalization of the concept of eigenvector. In this note, we give an invariant proof of this Halmos's th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear algebra and its applications Ročník 329; číslo 1; s. 171 - 174
Hlavný autor: Faouzi, Abdelkhalek
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 15.05.2001
Elsevier Science
Predmet:
ISSN:0024-3795, 1873-1856
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant of A. His proof was based on a generalization of the concept of eigenvector. In this note, we give an invariant proof of this Halmos's theorem.
ISSN:0024-3795
1873-1856
DOI:10.1016/S0024-3795(01)00239-7