Faster Residue Multiplication Modulo 521-bit Mersenne Prime and an Application to ECC
We present faster algorithms for the residue multiplication modulo 521-bit Mersenne prime on 32- and 64-bit platforms by using Toeplitz matrix-vector product. The total arithmetic cost of our proposed algorithms is less than that of existing algorithms, with algorithms for 64- and 32-bit residue mul...
Saved in:
| Published in: | IEEE transactions on circuits and systems. I, Regular papers Vol. 65; no. 8; pp. 2477 - 2490 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1549-8328, 1558-0806 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present faster algorithms for the residue multiplication modulo 521-bit Mersenne prime on 32- and 64-bit platforms by using Toeplitz matrix-vector product. The total arithmetic cost of our proposed algorithms is less than that of existing algorithms, with algorithms for 64- and 32-bit residue multiplication giving the best timing results on our test machine. The transition from 64- to 32-bit implementation is full of challenges because the number of limbs doubles and the limbs' bitlengths are cut in half. Without using any intrinsics or SIMD/assembly instructions in our implementation on an Intel(R) Core i5 - 6402P CPU @ 2.80GHz, we find 136 and 550 cycles for our 64-and 32-bit residue multiplications, respectively. In addition, we implement constant-time variable- and fixed-base scalar multiplication for the standard NIST curve P-521 and Edwards curve E-521. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-8328 1558-0806 |
| DOI: | 10.1109/TCSI.2018.2791285 |