A Sequential Quadratically Constrained Quadratic Programming Method for Differentiable Convex Minimization
This paper presents a sequential quadratically constrained quadratic programming (SQCQP) method for solving smooth convex programs. The SQCQP method solves at each iteration a subproblem that involves convex quadratic inequality constraints as well as a convex quadratic objective function. Such a qu...
Uložené v:
| Vydané v: | SIAM journal on optimization Ročník 13; číslo 4; s. 1098 - 1119 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2003
|
| Predmet: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents a sequential quadratically constrained quadratic programming (SQCQP) method for solving smooth convex programs. The SQCQP method solves at each iteration a subproblem that involves convex quadratic inequality constraints as well as a convex quadratic objective function. Such a quadratically constrained quadratic programming problem can be formulated as a second-order cone program, which can be solved efficiently by using interior point methods. We consider the following three fundamental issues on the SQCQP method: the feasibility of subproblems, the global convergence, and the quadratic rate of convergence. In particular, we show that the Maratos effect is avoided without any modification to the search direction, even though we use an ordinary $\ell_1$ exact penalty function as the line search merit function. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/S1052623401398120 |