Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem

An O( n 3 ) heuristic algorithm is described for solving d -city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP and the finding of a minimum cos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations Research Forum Jg. 3; H. 1; S. 20
1. Verfasser: Christofides, Nicos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.03.2022
Springer Nature B.V
Schlagworte:
ISSN:2662-2556, 2662-2556
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An O( n 3 ) heuristic algorithm is described for solving d -city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP and the finding of a minimum cost perfect matching of a certain induced subgraph of G . A worst-case analysis of this heuristic shows that the ratio of the answer obtained to the optimum TSP solution is strictly less than 3/2. This represents a 50% reduction over the value 2 which was the previously best known such ratio for the performance of other polynomial growth algorithms for the TSP.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2662-2556
2662-2556
DOI:10.1007/s43069-021-00101-z