A unified and modular coupling of particle methods with fem for civil engineering problems

In this work, a modular coupling approach for particle methods with the FEM (finite element method) is presented. The proposed coupled strategy takes advantage from the ability of particle methods of dealing with large displacements and deformations, especially when solving complex fluid–structure a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational particle mechanics Ročník 10; číslo 5; s. 1181 - 1203
Hlavní autoři: Flores, Carlos Eulogio, Sautter, Klaus Bernd, Bucher, Philipp, Cornejo, Alejandro, Franci, Alessandro, Bletzinger, Kai-Uwe, Wüchner, Roland
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.09.2023
Témata:
ISSN:2196-4378, 2196-4386
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, a modular coupling approach for particle methods with the FEM (finite element method) is presented. The proposed coupled strategy takes advantage from the ability of particle methods of dealing with large displacements and deformations, especially when solving complex fluid–structure and solid–structure interaction problems. The coupling between the FEM and particle methods is done using a co-simulation approach implemented in the open-source Kratos Multiphysics framework. The particle methods considered in this work are the DEM (discrete element method) and the PFEM (particle finite element method). The Lagrangian description of the PFEM is well suited for modeling fluids undergoing large deformations and free-surface motions, and the DEM can be used to simulate rocks, debris and other solid objects. To accelerate the convergence of the coupled strategy, a block Gauss–Seidel algorithm with Aitken relaxation is used. Several numerical examples, with an emphasis on natural hazards, are presented to test and validate the proposed coupled method.
ISSN:2196-4378
2196-4386
DOI:10.1007/s40571-023-00558-1