Gradient-based iterative parameter estimation for Box–Jenkins systems

This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) Vol. 60; no. 5; pp. 1200 - 1208
Main Authors: Wang, Dongqing, Yang, Guowei, Ding, Ruifeng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2010
Subjects:
ISSN:0898-1221, 1873-7668
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at each iterative computation (at each iteration), and thus can produce highly accurate parameter estimation. An example is given.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2010.06.001