Gradient-based iterative parameter estimation for Box–Jenkins systems
This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at...
Gespeichert in:
| Veröffentlicht in: | Computers & mathematics with applications (1987) Jg. 60; H. 5; S. 1200 - 1208 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2010
|
| Schlagworte: | |
| ISSN: | 0898-1221, 1873-7668 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at each iterative computation (at each iteration), and thus can produce highly accurate parameter estimation. An example is given. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/j.camwa.2010.06.001 |