Sum-of-squares chordal decomposition of polynomial matrix inequalities

We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P ( x ) with chordal sparsity is p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 197; číslo 1; s. 71 - 108
Hlavní autori: Zheng, Yang, Fantuzzi, Giovanni
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P ( x ) with chordal sparsity is positive semidefinite for all x ∈ R n if and only if there exists a sum-of-squares (SOS) polynomial σ ( x ) such that σ P is a sum of sparse SOS matrices. Second, we show that setting σ ( x ) = ( x 1 2 + ⋯ + x n 2 ) ν for some integer ν suffices if P is homogeneous and positive definite globally. Third, we prove that if P is positive definite on a compact semialgebraic set K = { x : g 1 ( x ) ≥ 0 , … , g m ( x ) ≥ 0 } satisfying the Archimedean condition, then P ( x ) = S 0 ( x ) + g 1 ( x ) S 1 ( x ) + ⋯ + g m ( x ) S m ( x ) for matrices S i ( x ) that are sums of sparse SOS matrices. Finally, if K is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for ( x 1 2 + ⋯ + x n 2 ) ν P ( x ) with some integer ν ≥ 0 when P and g 1 , … , g m are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones.
AbstractList We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P ( x ) with chordal sparsity is positive semidefinite for all $$x\in \mathbb {R}^n$$ x ∈ R n if and only if there exists a sum-of-squares (SOS) polynomial $$\sigma (x)$$ σ ( x ) such that $$\sigma P$$ σ P is a sum of sparse SOS matrices. Second, we show that setting $$\sigma (x)=(x_1^2 + \cdots + x_n^2)^\nu $$ σ ( x ) = ( x 1 2 + ⋯ + x n 2 ) ν for some integer $$\nu $$ ν suffices if P is homogeneous and positive definite globally. Third, we prove that if P is positive definite on a compact semialgebraic set $$\mathcal {K}=\{x:g_1(x)\ge 0,\ldots ,g_m(x)\ge 0\}$$ K = { x : g 1 ( x ) ≥ 0 , … , g m ( x ) ≥ 0 } satisfying the Archimedean condition, then $$P(x) = S_0(x) + g_1(x)S_1(x) + \cdots + g_m(x)S_m(x)$$ P ( x ) = S 0 ( x ) + g 1 ( x ) S 1 ( x ) + ⋯ + g m ( x ) S m ( x ) for matrices $$S_i(x)$$ S i ( x ) that are sums of sparse SOS matrices. Finally, if $$\mathcal {K}$$ K is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for $$(x_1^2 + \cdots + x_n^2)^\nu P(x)$$ ( x 1 2 + ⋯ + x n 2 ) ν P ( x ) with some integer $$\nu \ge 0$$ ν ≥ 0 when P and $$g_1,\ldots ,g_m$$ g 1 , … , g m are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones.
We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P ( x ) with chordal sparsity is positive semidefinite for all x ∈ R n if and only if there exists a sum-of-squares (SOS) polynomial σ ( x ) such that σ P is a sum of sparse SOS matrices. Second, we show that setting σ ( x ) = ( x 1 2 + ⋯ + x n 2 ) ν for some integer ν suffices if P is homogeneous and positive definite globally. Third, we prove that if P is positive definite on a compact semialgebraic set K = { x : g 1 ( x ) ≥ 0 , … , g m ( x ) ≥ 0 } satisfying the Archimedean condition, then P ( x ) = S 0 ( x ) + g 1 ( x ) S 1 ( x ) + ⋯ + g m ( x ) S m ( x ) for matrices S i ( x ) that are sums of sparse SOS matrices. Finally, if K is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for ( x 1 2 + ⋯ + x n 2 ) ν P ( x ) with some integer ν ≥ 0 when P and g 1 , … , g m are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones.
Author Zheng, Yang
Fantuzzi, Giovanni
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0003-1545-231X
  surname: Zheng
  fullname: Zheng, Yang
  email: zhengy@eng.ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California
– sequence: 2
  givenname: Giovanni
  orcidid: 0000-0002-0808-0944
  surname: Fantuzzi
  fullname: Fantuzzi, Giovanni
  organization: Department of Aeronautics, Imperial College London
BookMark eNp9kMFOAyEQhonRxLb6Ap72BdABdmF7NI1VkyYe1DMBFpRmFypsU_v2UuvJQ09zmP_7M_NN0XmIwSJ0Q-CWAIi7TICAwEAJBiJoi3dnaEJqxnHNa36OJgC0wQ0ncImmOa8BgLC2naDl63bA0eH8tVXJ5sp8xtSpvuqsicMmZj_6GKroqk3s9yEOvuwGNSb_XflgC9SXhM1X6MKpPtvrvzlD78uHt8UTXr08Pi_uV9gw1oxYEdEIZxlhTDeUqM4J3RjbCGqpMnMNimoBc0c7Zw3XXcucs8pwLkDPa6fZDLXHXpNizsk6afyoDjeOSfleEpAHH_LoQxYf8teH3BWU_kM3yQ8q7U9D7AjlEg4fNsl13KZQXjxF_QBop3g6
CitedBy_id crossref_primary_10_1287_moor_2023_0361
crossref_primary_10_1007_s10898_020_00973_1
crossref_primary_10_1109_TAC_2025_3545766
crossref_primary_10_1007_s10107_023_01993_x
crossref_primary_10_1137_24M1675461
crossref_primary_10_1137_23M1626529
Cites_doi 10.1137/19M1307871
10.1007/BF02952513
10.3166/ejc.12.3-29
10.1109/TAC.2017.2726578
10.1007/s00013-007-2234-z
10.1007/s10107-002-0351-9
10.1016/0024-3795(88)90240-6
10.1137/S1052623400366218
10.1137/1038003
10.1007/s10107-005-0684-2
10.1109/TPWRS.2013.2258044
10.1016/j.laa.2010.04.012
10.1137/05064504X
10.1137/050623802
10.1109/TAC.2014.2305934
10.1137/20M1323564
10.1016/j.jpaa.2003.12.011
10.1007/BF02592948
10.1109/TAC.2009.2017144
10.1109/TPWRS.2013.2294479
10.1016/0022-247X(70)90282-9
10.1017/CBO9780511804441
10.1512/iumj.1993.42.42045
10.1137/15M1034386
10.1016/S0764-4442(99)80251-1
10.1109/TAC.2010.2046926
10.1017/CBO9781107447226
10.1561/2400000006
10.1137/060668791
10.1287/moor.1120.0558
10.1007/s10107-019-01366-3
10.1215/S0012-7094-78-04519-2
10.1109/TAC.2011.2178717
10.1137/1.9781611970791
10.1137/130926924
10.1109/CDC.2007.4435026
10.1007/978-0-387-09686-5_9
10.4171/022-1/17
10.1109/CDC.2014.7040427
10.1007/s11117-021-00816-7
10.1145/3326229.3326254
10.23919/ACC.2019.8814998
10.1007/978-1-4757-3216-0_8
10.1109/CDC.2018.8619144
10.1007/BF02572604
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10107-021-01728-w
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 108
ExternalDocumentID 10_1007_s10107_021_01728_w
GrantInformation_xml – fundername: Imperial College Research Fellowship
– fundername: Clarendon Scholarship
– fundername: AFOSR Young Investigator Program
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c335t-a1757fe3133b521adf7b5ce572e2ac9b0a2b709f2dfec6bd83ffeac6670b94fb3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 03:34:03 EST 2025
Tue Nov 18 21:08:21 EST 2025
Fri Feb 21 02:45:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Polynomial matrix inequalities
11E25
Polynomial optimization
90C25
90C23
90C06
49M27
Chordal decomposition
12D15
11E76
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-a1757fe3133b521adf7b5ce572e2ac9b0a2b709f2dfec6bd83ffeac6670b94fb3
ORCID 0000-0002-0808-0944
0000-0003-1545-231X
OpenAccessLink https://link.springer.com/10.1007/s10107-021-01728-w
PageCount 38
ParticipantIDs crossref_citationtrail_10_1007_s10107_021_01728_w
crossref_primary_10_1007_s10107_021_01728_w
springer_journals_10_1007_s10107_021_01728_w
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Chesi (CR8) 2010; 55
Josz, Molzahn (CR15) 2018; 28
Murty, Kabadi (CR29) 1987; 39
CR39
Zheng, Fantuzzi, Papachristodoulou, Goulart, Wynn (CR55) 2020; 180
CR35
Putinar (CR36) 1993; 42
Putinar, Vasilescu (CR37) 1999; 328
Zheng, Mason, Papachristodoulou (CR56) 2018; 63
CR31
Sun, Andersen, Vandenberghe (CR45) 2014; 24
Henrion, Lasserre (CR14) 2011; 57
Löfberg (CR24) 2009; 54
Reznick (CR38) 1978; 45
Riener, Theobald, Andrén, Lasserre (CR40) 2013; 38
CR2
Grimm, Netzer, Schweighofer (CR13) 2007; 89
CR6
Klep, Magron, Povh (CR17) 2021; 01
CR9
Gatermann, Parrilo (CR12) 2004; 192
CR49
Andersen, Hansson, Vandenberghe (CR3) 2014; 29
Du (CR10) 2017; 19
Andersen, Pakazad, Hansson, Rantzer (CR4) 2014; 59
CR44
Scherer (CR43) 2006; 12
Scherer, Hol (CR42) 2006; 107
Wang, Magron, Lasserre (CR50) 2021; 31
Vandenberghe, Andersen (CR46) 2015; 1
CR18
Lasserre (CR20) 2010
CR54
CR53
CR52
Nie, Demmel (CR33) 2008; 19
Laurent, Putinar, Sullivant (CR22) 2009
Boyd, Vandenberghe (CR7) 2004
Kakimura (CR16) 2010; 433
Lasserre (CR19) 2006; 17
Waki, Kim, Kojima, Muramatsu (CR48) 2006; 17
Agler, Helton, McCullough, Rodman (CR1) 1988; 107
Lasserre (CR21) 2015
Artin (CR5) 1927; 5
Wang, Magron, Lasserre (CR51) 2021; 31
CR28
CR26
Molzahn, Holzer, Lesieutre, DeMarco (CR27) 2013; 28
CR25
Parrilo, Blekherman, Parrilo, Thomas (CR34) 2013
CR23
Rose (CR41) 1970; 32
Vandenberghe, Boyd (CR47) 1996; 38
Nesterov, Nemirovski (CR32) 1994
Fukuda, Kojima, Murota, Nakata (CR11) 2001; 11
Nakata, Fujisawa, Fukuda, Kojima, Murota (CR30) 2003; 95
L Vandenberghe (1728_CR47) 1996; 38
H Waki (1728_CR48) 2006; 17
J Wang (1728_CR50) 2021; 31
KG Murty (1728_CR29) 1987; 39
I Klep (1728_CR17) 2021; 01
N Kakimura (1728_CR16) 2010; 433
1728_CR18
C Scherer (1728_CR42) 2006; 107
S Boyd (1728_CR7) 2004
JB Lasserre (1728_CR20) 2010
C Riener (1728_CR40) 2013; 38
L Vandenberghe (1728_CR46) 2015; 1
1728_CR54
THB Du (1728_CR10) 2017; 19
1728_CR53
Y Nesterov (1728_CR32) 1994
M Fukuda (1728_CR11) 2001; 11
J Nie (1728_CR33) 2008; 19
J Wang (1728_CR51) 2021; 31
Y Zheng (1728_CR56) 2018; 63
Y Zheng (1728_CR55) 2020; 180
1728_CR28
M Putinar (1728_CR37) 1999; 328
1728_CR23
1728_CR26
1728_CR25
Y Sun (1728_CR45) 2014; 24
E Artin (1728_CR5) 1927; 5
D Grimm (1728_CR13) 2007; 89
1728_CR39
C Josz (1728_CR15) 2018; 28
K Gatermann (1728_CR12) 2004; 192
D Henrion (1728_CR14) 2011; 57
J Löfberg (1728_CR24) 2009; 54
B Reznick (1728_CR38) 1978; 45
1728_CR31
G Chesi (1728_CR8) 2010; 55
1728_CR35
M Putinar (1728_CR36) 1993; 42
MS Andersen (1728_CR4) 2014; 59
1728_CR52
MS Andersen (1728_CR3) 2014; 29
M Laurent (1728_CR22) 2009
JB Lasserre (1728_CR21) 2015
DK Molzahn (1728_CR27) 2013; 28
CW Scherer (1728_CR43) 2006; 12
1728_CR2
PA Parrilo (1728_CR34) 2013
1728_CR9
JB Lasserre (1728_CR19) 2006; 17
1728_CR6
K Nakata (1728_CR30) 2003; 95
1728_CR44
J Agler (1728_CR1) 1988; 107
1728_CR49
DJ Rose (1728_CR41) 1970; 32
References_xml – ident: CR49
– volume: 31
  start-page: 30
  issue: 1
  year: 2021
  end-page: 58
  ident: CR51
  article-title: TSSOS: a moment-SOS hierarchy that exploits term sparsity
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1307871
– ident: CR39
– volume: 5
  start-page: 100
  issue: 1
  year: 1927
  end-page: 115
  ident: CR5
  article-title: Über die Zerlegung definiter Funktionen in Quadrate
  publication-title: Abh. Math. Semin. Univ. Hambg.
  doi: 10.1007/BF02952513
– year: 2010
  ident: CR20
  publication-title: Moments, Positive Polynomials and Their Applications
– volume: 12
  start-page: 3
  issue: 1
  year: 2006
  end-page: 29
  ident: CR43
  article-title: LMI relaxations in robust control
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.12.3-29
– ident: CR35
– ident: CR54
– volume: 63
  start-page: 752
  issue: 3
  year: 2018
  end-page: 767
  ident: CR56
  article-title: Scalable design of structured controllers using chordal decomposition
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2726578
– volume: 89
  start-page: 399
  issue: 5
  year: 2007
  end-page: 403
  ident: CR13
  article-title: A note on the representation of positive polynomials with structured sparsity
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/s00013-007-2234-z
– volume: 95
  start-page: 303
  issue: 2
  year: 2003
  end-page: 327
  ident: CR30
  article-title: Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results
  publication-title: Math. Program. B
  doi: 10.1007/s10107-002-0351-9
– ident: CR25
– volume: 107
  start-page: 101
  year: 1988
  end-page: 149
  ident: CR1
  article-title: Positive semidefinite matrices with a given sparsity pattern
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(88)90240-6
– volume: 11
  start-page: 647
  issue: 3
  year: 2001
  end-page: 674
  ident: CR11
  article-title: Exploiting sparsity in semidefinite programming via matrix completion I: general framework
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366218
– volume: 38
  start-page: 49
  issue: 1
  year: 1996
  end-page: 95
  ident: CR47
  article-title: Semidefinite programming
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– volume: 107
  start-page: 189
  year: 2006
  end-page: 211
  ident: CR42
  article-title: Matrix sum-of-squares relaxations for robust semi-definite programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0684-2
– ident: CR9
– volume: 28
  start-page: 3987
  issue: 4
  year: 2013
  end-page: 3998
  ident: CR27
  article-title: Implementation of a large-scale optimal power flow solver based on semidefinite programming
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2258044
– ident: CR26
– volume: 433
  start-page: 819
  issue: 4
  year: 2010
  end-page: 823
  ident: CR16
  article-title: A direct proof for the matrix decomposition of chordal-structured positive semidefinite matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.04.012
– volume: 17
  start-page: 822
  issue: 3
  year: 2006
  end-page: 843
  ident: CR19
  article-title: Convergent SDP-relaxations in polynomial optimization with sparsity
  publication-title: SIAM J. Optim.
  doi: 10.1137/05064504X
– volume: 17
  start-page: 218
  issue: 1
  year: 2006
  end-page: 242
  ident: CR48
  article-title: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity
  publication-title: SIAM J. Optim.
  doi: 10.1137/050623802
– volume: 59
  start-page: 2151
  issue: 8
  year: 2014
  end-page: 2156
  ident: CR4
  article-title: Robust stability analysis of sparsely interconnected uncertain systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2305934
– ident: CR18
– volume: 31
  start-page: 114
  issue: 1
  year: 2021
  end-page: 141
  ident: CR50
  article-title: Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1323564
– volume: 192
  start-page: 95
  issue: 1–3
  year: 2004
  end-page: 128
  ident: CR12
  article-title: Symmetry groups, semidefinite programs, and sums of squares
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2003.12.011
– ident: CR2
– volume: 39
  start-page: 117
  issue: 2
  year: 1987
  end-page: 129
  ident: CR29
  article-title: Some NP-complete problems in quadratic and nonlinear programming
  publication-title: Math. Program.
  doi: 10.1007/BF02592948
– ident: CR53
– volume: 54
  start-page: 1007
  issue: 5
  year: 2009
  end-page: 1011
  ident: CR24
  article-title: Pre-and post-processing sum-of-squares programs in practice
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2009.2017144
– volume: 29
  start-page: 1855
  issue: 4
  year: 2014
  end-page: 1863
  ident: CR3
  article-title: Reduced-complexity semidefinite relaxations of optimal power flow problems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2294479
– ident: CR6
– volume: 32
  start-page: 597
  issue: 3
  year: 1970
  end-page: 609
  ident: CR41
  article-title: Triangulated graphs and the elimination process
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/0022-247X(70)90282-9
– year: 2004
  ident: CR7
  publication-title: Convex Optimization
  doi: 10.1017/CBO9780511804441
– volume: 01
  start-page: 1
  year: 2021
  end-page: 37
  ident: CR17
  article-title: Sparse noncommutative polynomial optimization
  publication-title: Math. Program.
– ident: CR23
– start-page: 47
  year: 2013
  end-page: 157
  ident: CR34
  article-title: Polynomial optimization, sums of squares and applications
  publication-title: Semidefinite Optimization and Convex Algebraic Geometry, Chap. 3
– volume: 42
  start-page: 969
  issue: 3
  year: 1993
  end-page: 984
  ident: CR36
  article-title: Positive polynomials on compact semi-algebraic sets
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1993.42.42045
– ident: CR44
– volume: 28
  start-page: 1017
  issue: 2
  year: 2018
  end-page: 1048
  ident: CR15
  article-title: Lasserre hierarchy for large scale polynomial optimization in real and complex variables
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1034386
– volume: 328
  start-page: 585
  issue: 7
  year: 1999
  end-page: 589
  ident: CR37
  article-title: Positive polynomials on semi-algebraic sets
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/S0764-4442(99)80251-1
– volume: 55
  start-page: 2500
  issue: 11
  year: 2010
  end-page: 2510
  ident: CR8
  article-title: LMI techniques for optimization over polynomials in control: a survey
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2046926
– year: 2015
  ident: CR21
  publication-title: An Introduction to Polynomial and Semi-algebraic Optimization
  doi: 10.1017/CBO9781107447226
– ident: CR52
– ident: CR31
– volume: 1
  start-page: 241
  issue: 4
  year: 2015
  end-page: 433
  ident: CR46
  article-title: Chordal graphs and semidefinite optimization
  publication-title: Found. Trends Optim.
  doi: 10.1561/2400000006
– volume: 19
  start-page: 1534
  issue: 4
  year: 2008
  end-page: 1558
  ident: CR33
  article-title: Sparse SOS relaxations for minimizing functions that are summations of small polynomials
  publication-title: SIAM J. Optim.
  doi: 10.1137/060668791
– volume: 38
  start-page: 122
  issue: 1
  year: 2013
  end-page: 141
  ident: CR40
  article-title: Exploiting symmetries in SDP-relaxations for polynomial optimization
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1120.0558
– start-page: 157
  year: 2009
  end-page: 270
  ident: CR22
  article-title: Sums of squares, moment matrices and optimization over polynomials
  publication-title: Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications
– volume: 180
  start-page: 489
  year: 2020
  end-page: 532
  ident: CR55
  article-title: Chordal decomposition in operator-splitting methods for sparse semidefinite programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01366-3
– volume: 45
  start-page: 363
  issue: 2
  year: 1978
  end-page: 374
  ident: CR38
  article-title: Extremal PSD forms with few terms
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-78-04519-2
– ident: CR28
– volume: 57
  start-page: 1456
  issue: 6
  year: 2011
  end-page: 1467
  ident: CR14
  article-title: Inner approximations for polynomial matrix inequalities and robust stability regions
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2178717
– year: 1994
  ident: CR32
  publication-title: Interior-Point Polynomial Algorithms in Convex Programming
  doi: 10.1137/1.9781611970791
– volume: 19
  start-page: 171
  issue: 2
  year: 2017
  end-page: 182
  ident: CR10
  article-title: A note on Positivstellensätze for matrix polynomials
  publication-title: East-West J. Math.
– volume: 24
  start-page: 873
  issue: 2
  year: 2014
  end-page: 897
  ident: CR45
  article-title: Decomposition in conic optimization with partially separable structure
  publication-title: SIAM J. Optim.
  doi: 10.1137/130926924
– volume: 55
  start-page: 2500
  issue: 11
  year: 2010
  ident: 1728_CR8
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2046926
– volume-title: An Introduction to Polynomial and Semi-algebraic Optimization
  year: 2015
  ident: 1728_CR21
  doi: 10.1017/CBO9781107447226
– ident: 1728_CR6
  doi: 10.1109/CDC.2007.4435026
– volume: 17
  start-page: 218
  issue: 1
  year: 2006
  ident: 1728_CR48
  publication-title: SIAM J. Optim.
  doi: 10.1137/050623802
– volume: 59
  start-page: 2151
  issue: 8
  year: 2014
  ident: 1728_CR4
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2305934
– volume: 95
  start-page: 303
  issue: 2
  year: 2003
  ident: 1728_CR30
  publication-title: Math. Program. B
  doi: 10.1007/s10107-002-0351-9
– volume: 39
  start-page: 117
  issue: 2
  year: 1987
  ident: 1728_CR29
  publication-title: Math. Program.
  doi: 10.1007/BF02592948
– volume: 38
  start-page: 122
  issue: 1
  year: 2013
  ident: 1728_CR40
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1120.0558
– ident: 1728_CR18
– ident: 1728_CR28
– volume: 107
  start-page: 101
  year: 1988
  ident: 1728_CR1
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(88)90240-6
– volume: 192
  start-page: 95
  issue: 1–3
  year: 2004
  ident: 1728_CR12
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2003.12.011
– volume: 17
  start-page: 822
  issue: 3
  year: 2006
  ident: 1728_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/05064504X
– volume: 5
  start-page: 100
  issue: 1
  year: 1927
  ident: 1728_CR5
  publication-title: Abh. Math. Semin. Univ. Hambg.
  doi: 10.1007/BF02952513
– volume-title: Moments, Positive Polynomials and Their Applications
  year: 2010
  ident: 1728_CR20
– volume: 57
  start-page: 1456
  issue: 6
  year: 2011
  ident: 1728_CR14
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2178717
– volume: 433
  start-page: 819
  issue: 4
  year: 2010
  ident: 1728_CR16
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.04.012
– volume: 38
  start-page: 49
  issue: 1
  year: 1996
  ident: 1728_CR47
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– volume: 89
  start-page: 399
  issue: 5
  year: 2007
  ident: 1728_CR13
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/s00013-007-2234-z
– volume: 29
  start-page: 1855
  issue: 4
  year: 2014
  ident: 1728_CR3
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2294479
– ident: 1728_CR44
  doi: 10.1007/978-0-387-09686-5_9
– volume: 12
  start-page: 3
  issue: 1
  year: 2006
  ident: 1728_CR43
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.12.3-29
– volume: 32
  start-page: 597
  issue: 3
  year: 1970
  ident: 1728_CR41
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/0022-247X(70)90282-9
– volume-title: Convex Optimization
  year: 2004
  ident: 1728_CR7
  doi: 10.1017/CBO9780511804441
– volume: 19
  start-page: 171
  issue: 2
  year: 2017
  ident: 1728_CR10
  publication-title: East-West J. Math.
– start-page: 47
  volume-title: Semidefinite Optimization and Convex Algebraic Geometry, Chap. 3
  year: 2013
  ident: 1728_CR34
– volume: 31
  start-page: 30
  issue: 1
  year: 2021
  ident: 1728_CR51
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1307871
– ident: 1728_CR23
– volume-title: Interior-Point Polynomial Algorithms in Convex Programming
  year: 1994
  ident: 1728_CR32
  doi: 10.1137/1.9781611970791
– ident: 1728_CR31
  doi: 10.4171/022-1/17
– volume: 107
  start-page: 189
  year: 2006
  ident: 1728_CR42
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0684-2
– volume: 28
  start-page: 1017
  issue: 2
  year: 2018
  ident: 1728_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1034386
– ident: 1728_CR35
  doi: 10.1109/CDC.2014.7040427
– ident: 1728_CR9
  doi: 10.1007/s11117-021-00816-7
– start-page: 157
  volume-title: Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications
  year: 2009
  ident: 1728_CR22
– volume: 42
  start-page: 969
  issue: 3
  year: 1993
  ident: 1728_CR36
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1993.42.42045
– volume: 11
  start-page: 647
  issue: 3
  year: 2001
  ident: 1728_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366218
– volume: 328
  start-page: 585
  issue: 7
  year: 1999
  ident: 1728_CR37
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/S0764-4442(99)80251-1
– volume: 180
  start-page: 489
  year: 2020
  ident: 1728_CR55
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01366-3
– volume: 45
  start-page: 363
  issue: 2
  year: 1978
  ident: 1728_CR38
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-78-04519-2
– volume: 28
  start-page: 3987
  issue: 4
  year: 2013
  ident: 1728_CR27
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2258044
– volume: 31
  start-page: 114
  issue: 1
  year: 2021
  ident: 1728_CR50
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1323564
– ident: 1728_CR49
  doi: 10.1145/3326229.3326254
– volume: 19
  start-page: 1534
  issue: 4
  year: 2008
  ident: 1728_CR33
  publication-title: SIAM J. Optim.
  doi: 10.1137/060668791
– ident: 1728_CR54
  doi: 10.23919/ACC.2019.8814998
– ident: 1728_CR26
– ident: 1728_CR25
– volume: 24
  start-page: 873
  issue: 2
  year: 2014
  ident: 1728_CR45
  publication-title: SIAM J. Optim.
  doi: 10.1137/130926924
– volume: 63
  start-page: 752
  issue: 3
  year: 2018
  ident: 1728_CR56
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2726578
– ident: 1728_CR2
  doi: 10.1007/978-1-4757-3216-0_8
– ident: 1728_CR53
  doi: 10.1109/CDC.2018.8619144
– volume: 01
  start-page: 1
  year: 2021
  ident: 1728_CR17
  publication-title: Math. Program.
– ident: 1728_CR52
– volume: 54
  start-page: 1007
  issue: 5
  year: 2009
  ident: 1728_CR24
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2009.2017144
– volume: 1
  start-page: 241
  issue: 4
  year: 2015
  ident: 1728_CR46
  publication-title: Found. Trends Optim.
  doi: 10.1561/2400000006
– ident: 1728_CR39
  doi: 10.1007/BF02572604
SSID ssj0001388
Score 2.4700606
Snippet We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin,...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Sum-of-squares chordal decomposition of polynomial matrix inequalities
URI https://link.springer.com/article/10.1007/s10107-021-01728-w
Volume 197
WOSCitedRecordID wos000720708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK Contemporary (1997 - Present)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5o9aAHd7FuzMGbBmYyS5KjiMWLRahKb8O8LCB0s9Na_fcms9QWpKDHYZLH8JJ5S_K-7wFcxUIZjkhJkKmQRMbEJDOJIEgjjb6Og0TLotkEa7d5tyueKlBYXle711eShaVeALsF7liNuvSXUU5m67ARO7YZl6N3Xuf2Nwg5rxu1uuiggsr8LmPZHS3fhRYuprX7v4_bg50qpPRuyz2wD2t6cADbC0SD9ulxzs6aH0KrM-2ToSH5-9ShjzxrAcfKSlDaFZhXVVze0HijYe_LwZbtu76j8v_0rMgShmkT7CN4ad0_3z2Qqp8CkWEYT0hmQwVmdGjTUrReO1OGYSx1zKimmRToZxSZLwxVRssEFQ-NsXY5SZiPIjIYHkNjMBzoE_CM8gXn2rcLKiLpS7SZDEphJzEhEbMmBLVaU1mRjbueF730hybZaSy1GksLjaWzJlzP54xKqo2Vo2_qlUir3y5fMfz0b8PPYMv1lS_PWs6hMRlP9QVsyo_JWz6-LPbbN0530rk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-K89sE3DbTpJcmjiGPiNoRN2VtpbiBs61w3p__epGvnBiLoY2lyKCfpuSTn-w7AVcikppxj5CXSR4HWIUp0xBDHgeKuCr1IibzZBGm1aLfLngpQWFZWu5dXkrmlXgC7efZYDdv0l2CKpquwFtg2OzZHb7_M7a_nU1o2arXRQQGV-VnGsjtavgvNXUxt538ftwvbRUjp3M72wB6sqME-bC0QDZqn5pydNTuAWnvSR6lG2dvEoo8cYwFH0kiQyhaYF1VcTqqdYdr7tLBl865vqfw_HCNyBsM0CfYhPNfuO3d1VPRTQML3wzFKTKhAtPJNWsqN106kJjwUKiRY4UQw7iaYE5dpLLUSEZfU19rY5SgiLmeB5v4RVAbpQB2Do6XLKFWuWVAWCFdwk8lwwcwkwgTnSRW8Uq2xKMjGbc-LXvxNk2w1FhuNxbnG4mkVrudzhjOqjV9H35QrERe_XfbL8JO_Db-EjXqn2YgbD63HU9i0PeZn5y5nUBmPJuoc1sX7-DUbXeR77ws5ItWd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivffBNw9r0kuRR1KKoYziVvZXmBsK2zrVz-u9NepkbyEB8bHsSyklyTk5yvu8AcOZToQhjCDqxcKGnlA9jFVDIkCeZLX0nkDwvNoGbTdLp0NYUij_Pdq-uJAtMg2Fp6meNgVCNKeCbY47YkAmFMSJwvAiWPP3KJHU9tV8ntthxCamKtpqdQgmb-b2PWdc0ey-au5tw4_8_ugnWy62mdVnMjS2wIPvbYG2KgFA_PU5YW9MdELZHPZgomL6PDCrJ0pZxKHQPQprE8zK7y0qUNUi6XwbOrL_1DMX_p6W7LOCZOvDeBS_hzfPVLSzrLEDuun4GY72FwEq6Olxl2pvHQmHmc-ljJFHMKbNjxLBNFRJK8oAJ4iql7XUQYJtRTzF3D9T6SV_uA0sJmxIibT3Q1OM2ZzrCYZzqRphyxuI6cCoVR7wkITe1MLrRD32y0VikNRblGovGdXA-aTMoKDjmSl9UoxKVyzGdI37wN_FTsNK6DqOHu-b9IVg1peeL45gjUMuGI3kMlvlH9pYOT_Jp-A0-o96B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum-of-squares+chordal+decomposition+of+polynomial+matrix+inequalities&rft.jtitle=Mathematical+programming&rft.au=Zheng%2C+Yang&rft.au=Fantuzzi%2C+Giovanni&rft.date=2023-01-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=197&rft.issue=1&rft.spage=71&rft.epage=108&rft_id=info:doi/10.1007%2Fs10107-021-01728-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_021_01728_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon