Simple odd β-cycle inequalities for binary polynomial optimization

We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd β -cycle inequalities valid for this polytope, showed that these generally have Chvátal rank 2 with respect to the standard relaxation and that, together...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 206; číslo 1-2; s. 203 - 238
Hlavní autoři: Del Pia, Alberto, Walter, Matthias
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2024
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd β -cycle inequalities valid for this polytope, showed that these generally have Chvátal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle hypergraph instances. Moreover, they describe a separation algorithm in case the instance is a cycle hypergraph. We introduce a weaker version, called simple odd β -cycle inequalities, for which we establish a strongly polynomial-time separation algorithm for arbitrary instances. These inequalities still have Chvátal rank 2 in general and still suffice to describe the multilinear polytope for cycle hypergraphs. Finally, we report about computational results of our prototype implementation. The simple odd β -cycle inequalities sometimes help to close more of the integrality gap in the experiments; however, the preliminary implementation has substantial computational cost, suggesting room for improvement in the separation algorithm.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-023-01992-y