Riesz representation theorems for positive linear operators

We generalise the Riesz representation theorems for positive linear functionals on C c ( X ) and C 0 ( X ) , where X is a locally compact Hausdorff space, to positive linear operators from these spaces into a partially ordered vector space E . The representing measures are defined on the Borel σ -al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Banach journal of mathematical analysis Ročník 16; číslo 3
Hlavní autori: de Jeu, Marcel, Jiang, Xingni
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.07.2022
Predmet:
ISSN:2662-2033, 1735-8787
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We generalise the Riesz representation theorems for positive linear functionals on C c ( X ) and C 0 ( X ) , where X is a locally compact Hausdorff space, to positive linear operators from these spaces into a partially ordered vector space E . The representing measures are defined on the Borel σ -algebra of X and take their values in the extended positive cone of E . The corresponding integrals are order integrals. We give explicit formulas for the values of the representing measures at open and at compact subsets of  X . Results are included where the space E need not be a vector lattice, nor a normed space. Representing measures exist, for example, for positive linear operators into Banach lattices with order continuous norms, into the regular operators on KB-spaces, into the self-adjoint linear operators on complex Hilbert spaces, and into JBW-algebras.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-022-00177-7