Note on nonstability of the linear functional equation of higher order

We provide a complete solution of the problem of Hyers–Ulam stability for a large class of higher order linear functional equations in single variable, with constant coefficients. We obtain this by showing that such an equation is nonstable in the case where at least one of the roots of the characte...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & mathematics with applications (1987) Ročník 62; číslo 6; s. 2648 - 2657
Hlavní autori: Brzdȩk, Janusz, Popa, Dorian, Xu, Bing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2011
Predmet:
ISSN:0898-1221, 1873-7668
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We provide a complete solution of the problem of Hyers–Ulam stability for a large class of higher order linear functional equations in single variable, with constant coefficients. We obtain this by showing that such an equation is nonstable in the case where at least one of the roots of the characteristic equation is of module 1. Our results are related to the notions of shadowing (in dynamical systems and computer science) and controlled chaos. They also correspond to some earlier results on approximate solutions of functional equations in single variable.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2011.08.007