Interplay of traditional methods and machine learning algorithms for tagging boosted objects
Interest in deep learning in collider physics has been growing in recent years, specifically in applying these methods in jet classification, anomaly detection, particle identification etc. Among those, jet classification using neural networks is one of the well-established areas. In this review, we...
Uloženo v:
| Vydáno v: | The European physical journal. ST, Special topics Ročník 233; číslo 15-16; s. 2531 - 2558 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1951-6355, 1951-6401 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Interest in deep learning in collider physics has been growing in recent years, specifically in applying these methods in jet classification, anomaly detection, particle identification etc. Among those, jet classification using neural networks is one of the well-established areas. In this review, we discuss different tagging frameworks available to tag boosted objects, especially boosted Higgs boson and top quark, at the Large Hadron Collider (LHC). Our aim is to study the interplay of traditional jet substructure-based methods with the state-of-the-art machine learning ones. In this methodology, we would gain some interpretability of those machine learning methods, and which in turn helps to propose hybrid taggers relevant for tagging of those boosted objects belonging to both Standard Model (SM) and physics beyond the SM. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1951-6355 1951-6401 |
| DOI: | 10.1140/epjs/s11734-024-01256-6 |