Machine learning in experimental neutrino physics

Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise parameters of the PMNS matrix, which describes neutrino oscillation phenomena. The next generation neutrino experiment will prioritize measuring lepto...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The European physical journal. ST, Special topics Ročník 233; číslo 15-16; s. 2687 - 2698
Hlavní autor: Poonthottathil, N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Témata:
ISSN:1951-6355, 1951-6401
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise parameters of the PMNS matrix, which describes neutrino oscillation phenomena. The next generation neutrino experiment will prioritize measuring leptonic CP-violation, potentially revealing the matter–antimatter asymmetry of the universe. Technological advancements will enable faster and more precise measurements. This article describes how neutrino experiments, will utilize machine learning techniques to identify and reconstruct different neutrino event topology in detectors. This approach promises unprecedented measurements of neutrino oscillation parameters.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-024-01280-6