Machine learning in experimental neutrino physics

Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise parameters of the PMNS matrix, which describes neutrino oscillation phenomena. The next generation neutrino experiment will prioritize measuring lepto...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Vol. 233; no. 15-16; pp. 2687 - 2698
Main Author: Poonthottathil, N.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Subjects:
ISSN:1951-6355, 1951-6401
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise parameters of the PMNS matrix, which describes neutrino oscillation phenomena. The next generation neutrino experiment will prioritize measuring leptonic CP-violation, potentially revealing the matter–antimatter asymmetry of the universe. Technological advancements will enable faster and more precise measurements. This article describes how neutrino experiments, will utilize machine learning techniques to identify and reconstruct different neutrino event topology in detectors. This approach promises unprecedented measurements of neutrino oscillation parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-024-01280-6