Improved fireworks algorithm with information exchange for function optimization

The fireworks algorithm, which is inspired by the explosion of fireworks, is a new swarm-based meta-heuristic algorithm for global optimization. This work proposes an improved fireworks optimization algorithm (IFWA) based on the enhanced fireworks algorithm (EFWA). Three aspects of improvement are p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 163; s. 82 - 90
Hlavní autori: Cheng, Rong, Bai, Yanping, Zhao, Yu, Tan, Xiuhui, Xu, Ting
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.01.2019
Elsevier Science Ltd
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The fireworks algorithm, which is inspired by the explosion of fireworks, is a new swarm-based meta-heuristic algorithm for global optimization. This work proposes an improved fireworks optimization algorithm (IFWA) based on the enhanced fireworks algorithm (EFWA). Three aspects of improvement are presented after an analysis of the drawbacks of EFWA. These improvements are a new explosion scheme, GS-Gaussian explosion operator, and deep information exchange strategy. The proposed IFWA is tested on 23 benchmark function optimization problems and a real engineering problem, namely, optimal controller design for automotive active suspension. Optimization results prove that IFWA has competitive advantage compared with EFWA and other popular meta-heuristic algorithms and demonstrates the potential to solve real problems effectively.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2018.08.016