A distributed source autoencoder of local visual descriptors for 3D reconstruction
•Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Opt...
Saved in:
| Published in: | Pattern recognition letters Vol. 146; pp. 193 - 199 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.06.2021
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0167-8655, 1872-7344 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | •Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Optimization of the coding scheme for 3D scene reconstruction applications.
[Display omitted]
This paper presents a local descriptor coding scheme for multicamera surveillance and 3D reconstruction embedding an autoencoder into a traditional distributed source coding strategy. The proposed solution permits shifting most of the computational complexity at the decoder/receiver and exploiting the correlation among descriptors of different cameras (thus reducing the coded bit rate) without increasing the inter-device communication load. Experimental results show that the proposed scheme permits obtaining a satisfying accuracy with respect to the most recent solutions while generating a limited bit rate. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0167-8655 1872-7344 |
| DOI: | 10.1016/j.patrec.2021.03.019 |