A distributed source autoencoder of local visual descriptors for 3D reconstruction
•Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Opt...
Uloženo v:
| Vydáno v: | Pattern recognition letters Ročník 146; s. 193 - 199 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.06.2021
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0167-8655, 1872-7344 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Optimization of the coding scheme for 3D scene reconstruction applications.
[Display omitted]
This paper presents a local descriptor coding scheme for multicamera surveillance and 3D reconstruction embedding an autoencoder into a traditional distributed source coding strategy. The proposed solution permits shifting most of the computational complexity at the decoder/receiver and exploiting the correlation among descriptors of different cameras (thus reducing the coded bit rate) without increasing the inter-device communication load. Experimental results show that the proposed scheme permits obtaining a satisfying accuracy with respect to the most recent solutions while generating a limited bit rate. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0167-8655 1872-7344 |
| DOI: | 10.1016/j.patrec.2021.03.019 |