A distributed source autoencoder of local visual descriptors for 3D reconstruction

•Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Opt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 146; s. 193 - 199
Hlavní autor: Milani, Simone
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.06.2021
Elsevier Science Ltd
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Optimization of the coding scheme for 3D scene reconstruction applications. [Display omitted] This paper presents a local descriptor coding scheme for multicamera surveillance and 3D reconstruction embedding an autoencoder into a traditional distributed source coding strategy. The proposed solution permits shifting most of the computational complexity at the decoder/receiver and exploiting the correlation among descriptors of different cameras (thus reducing the coded bit rate) without increasing the inter-device communication load. Experimental results show that the proposed scheme permits obtaining a satisfying accuracy with respect to the most recent solutions while generating a limited bit rate.
AbstractList This paper presents a local descriptor coding scheme for multicamera surveillance and 3D reconstruction embedding an autoencoder into a traditional distributed source coding strategy. The proposed solution permits shifting most of the computational complexity at the decoder/receiver and exploiting the correlation among descriptors of different cameras (thus reducing the coded bit rate) without increasing the inter-device communication load. Experimental results show that the proposed scheme permits obtaining a satisfying accuracy with respect to the most recent solutions while generating a limited bit rate.
•Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Optimization of the coding scheme for 3D scene reconstruction applications. [Display omitted] This paper presents a local descriptor coding scheme for multicamera surveillance and 3D reconstruction embedding an autoencoder into a traditional distributed source coding strategy. The proposed solution permits shifting most of the computational complexity at the decoder/receiver and exploiting the correlation among descriptors of different cameras (thus reducing the coded bit rate) without increasing the inter-device communication load. Experimental results show that the proposed scheme permits obtaining a satisfying accuracy with respect to the most recent solutions while generating a limited bit rate.
Author Milani, Simone
Author_xml – sequence: 1
  givenname: Simone
  surname: Milani
  fullname: Milani, Simone
  email: simone.milani@dei.unipd.it
  organization: Dept. of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova, Italy
BookMark eNqFkMtKAzEUhoNUsK2-gYuA6xlPkpnM1IVQ6hUKgug6ZDInkFInNckUfHtT6sqFrs7mv51vRiaDH5CQSwYlAyavN-VOp4Cm5MBZCaIEtjghU9Y2vGhEVU3INMuaopV1fUZmMW4AQIpFOyWvS9q7mILrxoQ9jX4MBqkek8fB-B4D9ZZuvdFbundxzKfHaILbJR8itT5QcUdztR9yyGiS88M5ObV6G_Hi587J-8P92-qpWL88Pq-W68IIUaXC8BYbUTNpJedMSwsChBQNMt1YgV1T24XmVjLeM4Ydr4QG5BUAa03d9SDm5OqYuwv-c8SY1CavH3Kl4nWuANlwllU3R5UJPsaAVhmX9GFnCtptFQN1YKg26shQHRgqECozzObql3kX3IcOX__Zbo82zO_vHQYVjcs8sXdZmlTv3d8B3yokj6M
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3232393
crossref_primary_10_1109_ACCESS_2022_3164681
Cites_doi 10.1109/TIT.2002.808103
10.1109/TPAMI.2014.2301163
10.1007/11744023_32
10.1109/TCSVT.2019.2945057
10.1023/B:VISI.0000029664.99615.94
10.1109/TPAMI.2018.2858760
10.1109/TIP.2015.2445294
10.1109/TMC.2016.2519340
10.1109/MMUL.2013.66
10.1109/JPROC.2004.839619
10.1109/TIP.2018.2794203
10.1109/TPAMI.2018.2789887
10.1016/j.image.2013.03.007
10.1109/ICRA.2018.8463202
10.1109/TPAMI.2018.2833865
10.1109/TIP.2015.2500034
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Jun 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jun 2021
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2021.03.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 199
ExternalDocumentID 10_1016_j_patrec_2021_03_019
S0167865521001069
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TK
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-c28e73516f6221a6f0303637e1a7f3eb75f9a2f612d11eb243a0e240018c5bd03
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000646018400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Fri Jul 25 04:14:47 EDT 2025
Sat Nov 29 07:24:56 EST 2025
Tue Nov 18 21:20:24 EST 2025
Fri Feb 23 02:45:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed vision networks
Autoencoder
Local descriptor coding
Structure-from-Motion
Distributed source coding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-c28e73516f6221a6f0303637e1a7f3eb75f9a2f612d11eb243a0e240018c5bd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2533406721
PQPubID 2047552
PageCount 7
ParticipantIDs proquest_journals_2533406721
crossref_citationtrail_10_1016_j_patrec_2021_03_019
crossref_primary_10_1016_j_patrec_2021_03_019
elsevier_sciencedirect_doi_10_1016_j_patrec_2021_03_019
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Milani, Wang, Ramchandran (bib0028) 2007
Ballocca, Fiandrotti, Gavelli, Mattelliano, Morello, Mosca, Vergori (bib0002) 2014
Lowe (bib0024) 2004; 60
Liong, Lu, Wang, Moulin, Zhou (bib0022) 2015
Calonder M., Lepetit V., Strecha C., Fua P., BRIEF: Binary robust independent elementary features, 2010, 778–79210.1007/978-3-642-15561-1_56
Chandrasekhar, Takacs, Chen, Tsai, Singh, Girod (bib0008) 2009; 7257
Nambiar, Tagliasacchi, Magli (bib0029) 2012
Hartmann, Klüssendorff, Maehle (bib0019) 2013
Schiopu, Munteanu (bib0034) 2020; 30
Schönberger, Frahm (bib0035) 2016
Duan, Chandrasekhar, Chen, Lin, Wang, Huang, Girod, Gao (bib0012) 2016; 25
Redondi, Baroffio, Bianchi, Cesana, Tagliasacchi (bib0032) 2016; 15
Girod, Aaron, Rane, Rebollo-Monedero (bib0016) 2005; 93
Lin, Lu, Chen, Zhou, Sun (bib0021) 2019; 41
Tian, Fan, Wu (bib0039) 2017
Pradhan, Ramchandran (bib0031) 2003; 49
Liu, Chen, Liu, Wu (bib0023) 2020; 30
Opdenbosch, Oelsch, Garcea, Aykut, Steinbach (bib0030) 2018
Akhtari, Pickhardt, Pau, Pietro, Tomarchio (bib0001) 2019
Baroffio, Canclini, Cesana, Redondi, Tagliasacchi, Tubaro (bib0004) 2015; 24
Yi, Trulls Fortuny, Lepetit, Fua (bib0041) 2016; 9910
Yu, Tian, Porikli, Hartley, Li, Heijnen, Balntas (bib0042) 2019
Winder, Hua, Brown (bib0040) 2009
Chen, Duan, Lin, Ji, Huang, Gao (bib0011) 2013
Bellavia, Colombo (bib0006) 2019
Duan, Sun, Zhang, Wang, Chen, Yin, See, Huang, Kot, Gao (bib0014) 2018; 27
Milani, Calvagno (bib0026) 2013; 28
Chandrasekhar, Takacs, Chen, Tsai, Makar, Girod (bib0009) 2014
Simonyan, Vedaldi, Zisserman (bib0038) 2014; 36
H. Bay, T. Tuytelaars, L. Van Gool, Surf: Speeded up robust features, 2006, pp.404–417
Michieletto, Milani, Cenedese, Baggio (bib0025) 2018
Zagoruyko, Komodakis (bib0043) 2015
Duan, Lin, Chen, Huang, Gao (bib0013) 2014; 21
Duan, Lu, Wang, Feng, Zhou (bib0015) 2019; 41
Shen, Xu, Liu, Yang, Huang, Shen (bib0037) 2018; 40
Milani, Memo (bib0027) 2016
Schönberger, Hardmeier, Sattler, Pollefeys (bib0036) 2017
Rublee, Rabaud, Konolige, Bradski (bib0033) 2011
Han, Leung, Jia, Sukthankar, Berg (bib0018) 2015
Johnson (bib0020) 2010
Zieba, Semberecki, El-Gaaly, Trzciński (bib0044) 2018
Balntas, Riba, Ponsa, Mikolajczyk (bib0003) 2016
Guarda, Rodrigues, Pereira (bib0017) 2019
Opdenbosch (10.1016/j.patrec.2021.03.019_bib0030) 2018
10.1016/j.patrec.2021.03.019_bib0007
Tian (10.1016/j.patrec.2021.03.019_bib0039) 2017
Akhtari (10.1016/j.patrec.2021.03.019_bib0001) 2019
Duan (10.1016/j.patrec.2021.03.019_bib0013) 2014; 21
Liu (10.1016/j.patrec.2021.03.019_bib0023) 2020; 30
Schönberger (10.1016/j.patrec.2021.03.019_bib0035) 2016
Girod (10.1016/j.patrec.2021.03.019_bib0016) 2005; 93
Johnson (10.1016/j.patrec.2021.03.019_bib0020) 2010
Duan (10.1016/j.patrec.2021.03.019_bib0015) 2019; 41
Bellavia (10.1016/j.patrec.2021.03.019_bib0006) 2019
Duan (10.1016/j.patrec.2021.03.019_bib0014) 2018; 27
Lowe (10.1016/j.patrec.2021.03.019_bib0024) 2004; 60
Rublee (10.1016/j.patrec.2021.03.019_bib0033) 2011
Han (10.1016/j.patrec.2021.03.019_bib0018) 2015
Zagoruyko (10.1016/j.patrec.2021.03.019_bib0043) 2015
Chandrasekhar (10.1016/j.patrec.2021.03.019_bib0008) 2009; 7257
Lin (10.1016/j.patrec.2021.03.019_bib0021) 2019; 41
Liong (10.1016/j.patrec.2021.03.019_bib0022) 2015
Redondi (10.1016/j.patrec.2021.03.019_bib0032) 2016; 15
Baroffio (10.1016/j.patrec.2021.03.019_bib0004) 2015; 24
Zieba (10.1016/j.patrec.2021.03.019_bib0044) 2018
Pradhan (10.1016/j.patrec.2021.03.019_bib0031) 2003; 49
Milani (10.1016/j.patrec.2021.03.019_bib0027) 2016
Schönberger (10.1016/j.patrec.2021.03.019_bib0036) 2017
Balntas (10.1016/j.patrec.2021.03.019_bib0003) 2016
Ballocca (10.1016/j.patrec.2021.03.019_bib0002) 2014
Chen (10.1016/j.patrec.2021.03.019_bib0011) 2013
Winder (10.1016/j.patrec.2021.03.019_bib0040) 2009
Yi (10.1016/j.patrec.2021.03.019_bib0041) 2016; 9910
Nambiar (10.1016/j.patrec.2021.03.019_bib0029) 2012
Schiopu (10.1016/j.patrec.2021.03.019_bib0034) 2020; 30
Chandrasekhar (10.1016/j.patrec.2021.03.019_bib0009) 2014
Shen (10.1016/j.patrec.2021.03.019_bib0037) 2018; 40
Yu (10.1016/j.patrec.2021.03.019_bib0042) 2019
Duan (10.1016/j.patrec.2021.03.019_bib0012) 2016; 25
Michieletto (10.1016/j.patrec.2021.03.019_bib0025) 2018
Hartmann (10.1016/j.patrec.2021.03.019_bib0019) 2013
Guarda (10.1016/j.patrec.2021.03.019_bib0017) 2019
10.1016/j.patrec.2021.03.019_bib0005
Milani (10.1016/j.patrec.2021.03.019_bib0026) 2013; 28
Simonyan (10.1016/j.patrec.2021.03.019_bib0038) 2014; 36
Milani (10.1016/j.patrec.2021.03.019_bib0028) 2007
References_xml – year: 2012
  ident: bib0029
  article-title: Secure Image Databases through Distributed Source Coding of SIFT Descriptors
  publication-title: 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)
– start-page: 3279
  year: 2015
  end-page: 3286
  ident: bib0018
  article-title: Matchnet: Unifying Feature and Metric Learning for Patch-based Matching
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 28
  start-page: 553
  year: 2013
  end-page: 568
  ident: bib0026
  article-title: Distributed video coding based on lossy syndromes generated in hybrid pixel/transform domain
  publication-title: Signal Process. Image Commun.
– start-page: 2598
  year: 2016
  end-page: 2602
  ident: bib0027
  article-title: Impact of Drone Swarm Formations in 3D Scene Reconstruction
  publication-title: 2016 IEEE International Conference on Image Processing (ICIP)
– volume: 36
  start-page: 1573
  year: 2014
  end-page: 1585
  ident: bib0038
  article-title: Learning local feature descriptors using convex optimisation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7257
  year: 2009
  ident: bib0008
  article-title: Transform coding of image feature descriptors
  publication-title: Proceedings of SPIE - The International Society for Optical Engineering
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib0017
  article-title: Point Cloud Coding: Adopting a Deep Learning-based Approach
  publication-title: 2019 Picture Coding Symposium
– year: 2019
  ident: bib0006
  article-title: An Evaluation of Recent Local Image Descriptors for Real-world Applications of Image Matching
  publication-title: 2019 16th International Conference on Machine Vision Applications (MVA)
– start-page: 1518
  year: 2013
  end-page: 1522
  ident: bib0011
  article-title: On the Interoperability of Local Descriptors Compression
  publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 178
  year: 2009
  end-page: 185
  ident: bib0040
  article-title: Picking the Best Daisy
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 60
  start-page: 91
  year: 2004
  ident: bib0024
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– start-page: 6128
  year: 2017
  end-page: 6136
  ident: bib0039
  article-title: L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 41
  start-page: 1501
  year: 2019
  end-page: 1514
  ident: bib0021
  article-title: Unsupervised deep learning of compact binary descriptors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2007
  ident: bib0028
  article-title: Achieving H.264-like Compression Efficiency with Distributed Video Coding
  publication-title: Proceedings of SPIE Visual Communications and Image Processing Conference, San Jose, California, USA
– start-page: 6959
  year: 2017
  end-page: 6968
  ident: bib0036
  article-title: Comparative Evaluation of Hand-crafted and Learned Local Features
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 427
  year: 2019
  end-page: 430
  ident: bib0001
  article-title: Intelligent Embedded Load Detection at the Edge on Industry 4.0 Powertrains Applications
  publication-title: 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI)
– volume: 15
  start-page: 3000
  year: 2016
  end-page: 3013
  ident: bib0032
  article-title: Compress-then-analyze versus analyze-then-compress: what is best in visual sensor networks?
  publication-title: IEEE Trans. Mobile Comput.
– reference: H. Bay, T. Tuytelaars, L. Van Gool, Surf: Speeded up robust features, 2006, pp.404–417
– start-page: 2475
  year: 2015
  end-page: 2483
  ident: bib0022
  article-title: Deep Hashing for Compact Binary Codes Learning
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 21
  start-page: 30
  year: 2014
  end-page: 40
  ident: bib0013
  article-title: Compact descriptors for visual search
  publication-title: IEEE Multimedia
– volume: 24
  start-page: 3546
  year: 2015
  end-page: 3560
  ident: bib0004
  article-title: Coding local and global binary visual features extracted from video sequences
  publication-title: IEEE Trans. Image Process.
– volume: 41
  start-page: 1924
  year: 2019
  end-page: 1938
  ident: bib0015
  article-title: Learning deep binary descriptor with multi-quantization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2010
  ident: bib0020
  article-title: Generalized Descriptor Compression for Storage and Matching
  publication-title: Proceedings of 2010 British Machine Vision Conference (BMV)
– volume: 30
  start-page: 1267
  year: 2020
  end-page: 1280
  ident: bib0023
  article-title: Deep learning-based technology in responses to the joint call for proposals on video compression with capability beyond HEVC
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 3166
  year: 2018
  end-page: 3170
  ident: bib0025
  article-title: Improving Consensus-based Distributed Camera Calibration via Edge Pruning and Graph Traversal Initialization
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 40
  start-page: 3034
  year: 2018
  end-page: 3044
  ident: bib0037
  article-title: Unsupervised deep hashing with similarity-adaptive and discrete optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2893
  year: 2019
  end-page: 2902
  ident: bib0042
  article-title: Unsupervised Extraction of Local Image Descriptors via Relative Distance Ranking Loss
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)
– start-page: 7270
  year: 2018
  end-page: 7277
  ident: bib0030
  article-title: Selection and compression of local binary features for remote visual SLAM
  publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA)
– year: 2016
  ident: bib0035
  article-title: Structure-from-motion Revisited
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 119.1
  year: 2016
  end-page: 119.11
  ident: bib0003
  article-title: Learning Local Feature Descriptors with Triplets and Shallow Convolutional Neural Networks
  publication-title: Proceedings of 2016 British Machine Vision Conference (BMV)
– start-page: 56
  year: 2013
  end-page: 61
  ident: bib0019
  article-title: A Comparison of Feature Descriptors for Visual SLAM
  publication-title: Proc. of 2013 European Conference on Mobile Robots
– start-page: 2564
  year: 2011
  end-page: 2571
  ident: bib0033
  article-title: Orb: An Efficient Alternative to Sift or Surf
  publication-title: Proc. of 2011 International Conference on Computer Vision (ICCV 2011)
– start-page: 3
  year: 2014
  end-page: 12
  ident: bib0009
  article-title: Feature Matching Performance of Compact Descriptors for Visual Search
  publication-title: 2014 Data Compression Conference
– start-page: 3411
  year: 2014
  end-page: 3413
  ident: bib0002
  article-title: Demonstrating the New Compact Descriptors for Visual Search (Cdvs) Standard for Image Retrieval on Mobile Devices
  publication-title: 2014 IEEE International Conference on Image Processing (ICIP)
– reference: Calonder M., Lepetit V., Strecha C., Fua P., BRIEF: Binary robust independent elementary features, 2010, 778–79210.1007/978-3-642-15561-1_56
– volume: 27
  start-page: 2201
  year: 2018
  end-page: 2216
  ident: bib0014
  article-title: Fast MPEG-CDVS encoder with GPU-CPU hybrid computing
  publication-title: IEEE Trans. Image Process.
– volume: 93
  start-page: 71
  year: 2005
  end-page: 83
  ident: bib0016
  article-title: Distributed video coding
  publication-title: Proc. IEEE
– volume: 9910
  start-page: 17.467
  year: 2016
  end-page: 483
  ident: bib0041
  article-title: LIFT: Learned invariant feature transform
  publication-title: Computer Vision - ECCV 2016, Pt VI
– volume: 25
  start-page: 179
  year: 2016
  end-page: 194
  ident: bib0012
  article-title: Overview of the MPEG-CDVS Standard
  publication-title: IEEE Trans. Image Process.
– volume: 30
  start-page: 1829
  year: 2020
  end-page: 1842
  ident: bib0034
  article-title: Deep-learning-based lossless image coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2018
  ident: bib0044
  article-title: BinGAN: Learning Compact Binary Descriptors with a Regularized GAN
  publication-title: Proc. of 2018 Neural Information Processing Systems Conference (NIPS)
– volume: 49
  start-page: 626
  year: 2003
  end-page: 643
  ident: bib0031
  article-title: Distributed source coding using syndromes (DISCUS): design and construction
  publication-title: IEEE Trans. Inf. Theory
– start-page: 4353
  year: 2015
  end-page: 4361
  ident: bib0043
  article-title: Learning to Compare Image Patches via Convolutional Neural Networks
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– ident: 10.1016/j.patrec.2021.03.019_bib0007
– volume: 30
  start-page: 1829
  year: 2020
  ident: 10.1016/j.patrec.2021.03.019_bib0034
  article-title: Deep-learning-based lossless image coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 427
  year: 2019
  ident: 10.1016/j.patrec.2021.03.019_bib0001
  article-title: Intelligent Embedded Load Detection at the Edge on Industry 4.0 Powertrains Applications
– volume: 49
  start-page: 626
  year: 2003
  ident: 10.1016/j.patrec.2021.03.019_bib0031
  article-title: Distributed source coding using syndromes (DISCUS): design and construction
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2002.808103
– volume: 36
  start-page: 1573
  year: 2014
  ident: 10.1016/j.patrec.2021.03.019_bib0038
  article-title: Learning local feature descriptors using convex optimisation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2301163
– volume: 9910
  start-page: 17.467
  year: 2016
  ident: 10.1016/j.patrec.2021.03.019_bib0041
  article-title: LIFT: Learned invariant feature transform
  publication-title: Computer Vision - ECCV 2016, Pt VI
– start-page: 1
  year: 2019
  ident: 10.1016/j.patrec.2021.03.019_bib0017
  article-title: Point Cloud Coding: Adopting a Deep Learning-based Approach
– start-page: 2475
  year: 2015
  ident: 10.1016/j.patrec.2021.03.019_bib0022
  article-title: Deep Hashing for Compact Binary Codes Learning
– year: 2018
  ident: 10.1016/j.patrec.2021.03.019_bib0044
  article-title: BinGAN: Learning Compact Binary Descriptors with a Regularized GAN
– volume: 7257
  year: 2009
  ident: 10.1016/j.patrec.2021.03.019_bib0008
  article-title: Transform coding of image feature descriptors
  publication-title: Proceedings of SPIE - The International Society for Optical Engineering
– start-page: 3
  year: 2014
  ident: 10.1016/j.patrec.2021.03.019_bib0009
  article-title: Feature Matching Performance of Compact Descriptors for Visual Search
– start-page: 3411
  year: 2014
  ident: 10.1016/j.patrec.2021.03.019_bib0002
  article-title: Demonstrating the New Compact Descriptors for Visual Search (Cdvs) Standard for Image Retrieval on Mobile Devices
– ident: 10.1016/j.patrec.2021.03.019_bib0005
  doi: 10.1007/11744023_32
– volume: 30
  start-page: 1267
  year: 2020
  ident: 10.1016/j.patrec.2021.03.019_bib0023
  article-title: Deep learning-based technology in responses to the joint call for proposals on video compression with capability beyond HEVC
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2945057
– year: 2016
  ident: 10.1016/j.patrec.2021.03.019_bib0035
  article-title: Structure-from-motion Revisited
– start-page: 4353
  year: 2015
  ident: 10.1016/j.patrec.2021.03.019_bib0043
  article-title: Learning to Compare Image Patches via Convolutional Neural Networks
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.patrec.2021.03.019_bib0024
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– year: 2019
  ident: 10.1016/j.patrec.2021.03.019_bib0006
  article-title: An Evaluation of Recent Local Image Descriptors for Real-world Applications of Image Matching
– volume: 41
  start-page: 1924
  year: 2019
  ident: 10.1016/j.patrec.2021.03.019_bib0015
  article-title: Learning deep binary descriptor with multi-quantization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858760
– start-page: 6128
  year: 2017
  ident: 10.1016/j.patrec.2021.03.019_bib0039
  article-title: L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space
– volume: 24
  start-page: 3546
  year: 2015
  ident: 10.1016/j.patrec.2021.03.019_bib0004
  article-title: Coding local and global binary visual features extracted from video sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2445294
– start-page: 3166
  year: 2018
  ident: 10.1016/j.patrec.2021.03.019_bib0025
  article-title: Improving Consensus-based Distributed Camera Calibration via Edge Pruning and Graph Traversal Initialization
– volume: 15
  start-page: 3000
  year: 2016
  ident: 10.1016/j.patrec.2021.03.019_bib0032
  article-title: Compress-then-analyze versus analyze-then-compress: what is best in visual sensor networks?
  publication-title: IEEE Trans. Mobile Comput.
  doi: 10.1109/TMC.2016.2519340
– volume: 21
  start-page: 30
  year: 2014
  ident: 10.1016/j.patrec.2021.03.019_bib0013
  article-title: Compact descriptors for visual search
  publication-title: IEEE Multimedia
  doi: 10.1109/MMUL.2013.66
– start-page: 178
  year: 2009
  ident: 10.1016/j.patrec.2021.03.019_bib0040
  article-title: Picking the Best Daisy
– volume: 93
  start-page: 71
  year: 2005
  ident: 10.1016/j.patrec.2021.03.019_bib0016
  article-title: Distributed video coding
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2004.839619
– volume: 27
  start-page: 2201
  year: 2018
  ident: 10.1016/j.patrec.2021.03.019_bib0014
  article-title: Fast MPEG-CDVS encoder with GPU-CPU hybrid computing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2794203
– start-page: 1518
  year: 2013
  ident: 10.1016/j.patrec.2021.03.019_bib0011
  article-title: On the Interoperability of Local Descriptors Compression
– volume: 40
  start-page: 3034
  year: 2018
  ident: 10.1016/j.patrec.2021.03.019_bib0037
  article-title: Unsupervised deep hashing with similarity-adaptive and discrete optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2789887
– start-page: 2598
  year: 2016
  ident: 10.1016/j.patrec.2021.03.019_bib0027
  article-title: Impact of Drone Swarm Formations in 3D Scene Reconstruction
– year: 2012
  ident: 10.1016/j.patrec.2021.03.019_bib0029
  article-title: Secure Image Databases through Distributed Source Coding of SIFT Descriptors
– start-page: 2893
  year: 2019
  ident: 10.1016/j.patrec.2021.03.019_bib0042
  article-title: Unsupervised Extraction of Local Image Descriptors via Relative Distance Ranking Loss
– start-page: 3279
  year: 2015
  ident: 10.1016/j.patrec.2021.03.019_bib0018
  article-title: Matchnet: Unifying Feature and Metric Learning for Patch-based Matching
– volume: 28
  start-page: 553
  year: 2013
  ident: 10.1016/j.patrec.2021.03.019_bib0026
  article-title: Distributed video coding based on lossy syndromes generated in hybrid pixel/transform domain
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2013.03.007
– start-page: 7270
  year: 2018
  ident: 10.1016/j.patrec.2021.03.019_bib0030
  article-title: Selection and compression of local binary features for remote visual SLAM
  publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA)
  doi: 10.1109/ICRA.2018.8463202
– volume: 41
  start-page: 1501
  year: 2019
  ident: 10.1016/j.patrec.2021.03.019_bib0021
  article-title: Unsupervised deep learning of compact binary descriptors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2833865
– year: 2007
  ident: 10.1016/j.patrec.2021.03.019_bib0028
  article-title: Achieving H.264-like Compression Efficiency with Distributed Video Coding
– start-page: 2564
  year: 2011
  ident: 10.1016/j.patrec.2021.03.019_bib0033
  article-title: Orb: An Efficient Alternative to Sift or Surf
– start-page: 6959
  year: 2017
  ident: 10.1016/j.patrec.2021.03.019_bib0036
  article-title: Comparative Evaluation of Hand-crafted and Learned Local Features
– start-page: 119.1
  year: 2016
  ident: 10.1016/j.patrec.2021.03.019_bib0003
  article-title: Learning Local Feature Descriptors with Triplets and Shallow Convolutional Neural Networks
– year: 2010
  ident: 10.1016/j.patrec.2021.03.019_bib0020
  article-title: Generalized Descriptor Compression for Storage and Matching
– volume: 25
  start-page: 179
  year: 2016
  ident: 10.1016/j.patrec.2021.03.019_bib0012
  article-title: Overview of the MPEG-CDVS Standard
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2500034
– start-page: 56
  year: 2013
  ident: 10.1016/j.patrec.2021.03.019_bib0019
  article-title: A Comparison of Feature Descriptors for Visual SLAM
SSID ssj0006398
Score 2.355202
Snippet •Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a...
This paper presents a local descriptor coding scheme for multicamera surveillance and 3D reconstruction embedding an autoencoder into a traditional distributed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 193
SubjectTerms Autoencoder
Cameras
Coding
Computer applications
Distributed source coding
Distributed vision networks
Embedding
Local descriptor coding
Receivers-Decoders
Reconstruction
Structure-from-Motion
Title A distributed source autoencoder of local visual descriptors for 3D reconstruction
URI https://dx.doi.org/10.1016/j.patrec.2021.03.019
https://www.proquest.com/docview/2533406721
Volume 146
WOSCitedRecordID wos000646018400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlAMc-CggCgXtAXGxjLy7jtc-RjQVVCVUkEq5rez1WkoVuaFJo_58ZvbDdamgcOBiRXYcRzvPs29nZ94Q8k7LrEyaIomTipk4lYmOS17kcS01TkiyaLi2zSbkdJrP58XJYHAUamG2S9m2-dVVsfqvpoZzYGwsnf0Hc3c_CifgMxgdjmB2OP6V4ce46eL6WBmMiWNwPiovN-coWYnKEUAP7QwWbRdrLB6pjXMd2HYHkw7FQWSXyZ20bJ_Anlg9zjbqEo8APUtbEtSR8y-LpWsUFX0HIPhtex9Y4L0EKBftChUvwclcpxnZQCQ4WCxqdfOIc565BLYunJ5j513Tvn9krh3iLb_tQghnH3ADwKCyJGdWe9a70xsy2dOv6vD0-FjNJvPZ-9WPGDuI4U67b6dyj-xwOSryIdkZf57Mj7p5GbhYHpTe8Z-HQkqb7Xf7wb8jKr9M2ZaHzJ6QR34BQcfO8E_JwLS75HFozkH9MO6Shz2lyWfk25j2UEEdKmgPFfS8oRYV1KGC9lBBARVUHNCbqHhOTg8ns4-fYt9OI9ZCpJtY89xIMWJZk3HOyqxJkL4IaVgpG2EqOWqKkjdAeWvGTMVTUSYGU4xZrkdVnYgXZNgCal4SqlmhayCfFRYmZ7DyKYukTit4TI2XzB4RYeyU9lrz2PJkqUJS4ZlyI65wxFUiFIz4Hom7u1ZOa-WO78tgFuX5ouOBCmB1x537wYrKv7prxbEqHTMT2Ks_X35NHly_L_tkCONu3pD7ertZrC_eetj9BLiTli0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+source+autoencoder+of+local+visual+descriptors+for+3D+reconstruction&rft.jtitle=Pattern+recognition+letters&rft.au=Milani%2C+Simone&rft.date=2021-06-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=146&rft.spage=193&rft_id=info:doi/10.1016%2Fj.patrec.2021.03.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon