A distributed source autoencoder of local visual descriptors for 3D reconstruction
•Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Opt...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition letters Jg. 146; S. 193 - 199 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.06.2021
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0167-8655, 1872-7344 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | •Application of a deep learning to the compression of local visual descriptors.•Combination of distributed source coding and autoencoders.•Definition of a low-complexity encoder suitable for mobile low-cost boards.•Competitive compression and reconstruction performances w.r.t existing solutions.•Optimization of the coding scheme for 3D scene reconstruction applications.
[Display omitted]
This paper presents a local descriptor coding scheme for multicamera surveillance and 3D reconstruction embedding an autoencoder into a traditional distributed source coding strategy. The proposed solution permits shifting most of the computational complexity at the decoder/receiver and exploiting the correlation among descriptors of different cameras (thus reducing the coded bit rate) without increasing the inter-device communication load. Experimental results show that the proposed scheme permits obtaining a satisfying accuracy with respect to the most recent solutions while generating a limited bit rate. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0167-8655 1872-7344 |
| DOI: | 10.1016/j.patrec.2021.03.019 |