Deep learning in ECG diagnosis: A review
Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to...
Saved in:
| Published in: | Knowledge-based systems Vol. 227; p. 107187 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
05.09.2021
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to detect the electrical activity of heart, is a very important harmless means of predicting and diagnosing CVDs. However, ECG signal has characteristics of complex and high chaos, making it time-consuming and exhausting to interpret ECG signal even for experts. Hence, computer-aided methods are required to relief human burden and reduce errors caused by tiredness, inter- and intra-difference. Deep learning shows outstanding performance on ECG classification studies recent few years. Its hierarchical architecture enables higher-level features obtained and its strong ability to feature extraction contributes to classification project. Latest studies can achieve higher accuracy and efficiency than manual classification by experts. In this paper, we review the existing studies of deep learning applied in ECG diagnosis according to four typical algorithms: stacked auto-encoders, deep belief network, convolutional neural network and recurrent neural network. We first introduced the mechanism, development and application of the algorithms. Then we review their applications in ECG diagnosis systematically, discussing their highlights and limitations. Our view about future potential development of deep learning in ECG diagnosis is stated in the final part of this paper. |
|---|---|
| AbstractList | Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to detect the electrical activity of heart, is a very important harmless means of predicting and diagnosing CVDs. However, ECG signal has characteristics of complex and high chaos, making it time-consuming and exhausting to interpret ECG signal even for experts. Hence, computer-aided methods are required to relief human burden and reduce errors caused by tiredness, inter- and intra-difference. Deep learning shows outstanding performance on ECG classification studies recent few years. Its hierarchical architecture enables higher-level features obtained and its strong ability to feature extraction contributes to classification project. Latest studies can achieve higher accuracy and efficiency than manual classification by experts. In this paper, we review the existing studies of deep learning applied in ECG diagnosis according to four typical algorithms: stacked auto-encoders, deep belief network, convolutional neural network and recurrent neural network. We first introduced the mechanism, development and application of the algorithms. Then we review their applications in ECG diagnosis systematically, discussing their highlights and limitations. Our view about future potential development of deep learning in ECG diagnosis is stated in the final part of this paper. |
| ArticleNumber | 107187 |
| Author | Wang, Huan Liu, Xinwen Qin, Lang Li, Zongjin |
| Author_xml | – sequence: 1 givenname: Xinwen orcidid: 0000-0001-5830-6027 surname: Liu fullname: Liu, Xinwen email: xinwenliu.carrie@qq.com organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Huan orcidid: 0000-0002-1403-5314 surname: Wang fullname: Wang, Huan email: wh.huanwang@gmail.com organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Zongjin orcidid: 0000-0002-5132-4721 surname: Li fullname: Li, Zongjin email: lizongjin.alan@qq.com organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Lang surname: Qin fullname: Qin, Lang email: qinlang51@126.com organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw8LXrxsTbKbrx6E0tYqFLzoOaTZ2ZK1ZmuyVfrvTVlPHvQyA8M87zDPCA186wGha4InBBN-10zefBuPcUIxJWkkiBRnaJgqzUWJ1QANsWI4F5iRCzSKscEYU0rkEN0uAPbZDkzwzm8z57PlfJVVzmxToovTbJYF-HTwdYnOa7OLcPXTx-j1Yfkyf8zXz6un-Wyd26Iou3yjjKpqojgHUUiQtgLKlFWY17Uoa8mUAkkxACcKyw2RlEvFjd2UypaMqWKMbvrcfWg_DhA73bSH4NNJTRnnjHLBirRV9ls2tDEGqPU-uHcTjppgfXKiG9070ScnuneSsOkvzLrOdK71XTBu9x9838OQ3k9Kgo7WgbdQuQC201Xr_g74BmiXfus |
| CitedBy_id | crossref_primary_10_1007_s40031_025_01222_3 crossref_primary_10_1109_ACCESS_2022_3227219 crossref_primary_10_3390_diagnostics13010111 crossref_primary_10_1016_j_chaos_2023_113971 crossref_primary_10_1109_ACCESS_2024_3378730 crossref_primary_10_1109_JBHI_2025_3547531 crossref_primary_10_3390_a16080357 crossref_primary_10_1007_s00217_023_04375_x crossref_primary_10_1002_mp_16831 crossref_primary_10_1016_j_compbiomed_2024_107977 crossref_primary_10_1016_j_health_2024_100366 crossref_primary_10_1177_20552076241234624 crossref_primary_10_1186_s40537_025_01070_4 crossref_primary_10_1186_s12911_022_01976_6 crossref_primary_10_1016_j_bspc_2024_106609 crossref_primary_10_1038_s41746_024_01130_8 crossref_primary_10_1016_j_bspc_2024_106968 crossref_primary_10_1016_j_compbiomed_2022_106199 crossref_primary_10_1016_j_asoc_2024_112337 crossref_primary_10_1016_j_ins_2024_120881 crossref_primary_10_3390_math11030562 crossref_primary_10_2174_1574893618666230706112826 crossref_primary_10_1016_j_isatra_2021_11_028 crossref_primary_10_1109_TIM_2023_3335528 crossref_primary_10_1109_JIOT_2024_3487977 crossref_primary_10_1016_j_ins_2023_03_099 crossref_primary_10_5674_jjppp_2409si crossref_primary_10_3390_app13084964 crossref_primary_10_1002_aelm_202201343 crossref_primary_10_1002_cpe_8383 crossref_primary_10_1080_17434440_2022_2115887 crossref_primary_10_1016_j_bspc_2025_107899 crossref_primary_10_1016_j_jelectrocard_2023_11_002 crossref_primary_10_1016_j_asoc_2025_112871 crossref_primary_10_3389_fphys_2023_1253907 crossref_primary_10_3390_jcm11133910 crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1311 crossref_primary_10_1038_s44325_024_00040_8 crossref_primary_10_1016_j_jmsy_2025_05_007 crossref_primary_10_1016_j_eswa_2025_127955 crossref_primary_10_1016_j_compbiomed_2024_109254 crossref_primary_10_1038_s41598_024_63378_0 crossref_primary_10_14814_phy2_16182 crossref_primary_10_1088_1361_6579_acb4dc crossref_primary_10_1016_j_inffus_2024_102698 crossref_primary_10_1016_j_compbiomed_2023_107908 crossref_primary_10_1016_j_bspc_2025_107602 crossref_primary_10_3390_s23042288 crossref_primary_10_1007_s11042_023_17716_5 crossref_primary_10_1016_j_bspc_2025_107720 crossref_primary_10_1016_j_knosys_2024_112262 crossref_primary_10_1109_ACCESS_2024_3355273 crossref_primary_10_1109_TIM_2024_3365152 crossref_primary_10_1016_j_cvdhj_2023_12_002 crossref_primary_10_1109_ACCESS_2024_3461756 crossref_primary_10_3390_s24248043 crossref_primary_10_1140_epjp_s13360_024_05802_y crossref_primary_10_3390_s22239347 crossref_primary_10_1007_s10489_024_05881_5 crossref_primary_10_3390_biology11040586 crossref_primary_10_1109_ACCESS_2024_3408282 crossref_primary_10_1109_TIM_2022_3154827 crossref_primary_10_1371_journal_pone_0277932 crossref_primary_10_1007_s10462_025_11259_x crossref_primary_10_1109_JBHI_2023_3315715 crossref_primary_10_1007_s13369_024_09202_3 crossref_primary_10_1016_j_bspc_2025_108005 crossref_primary_10_1016_j_engappai_2025_111225 crossref_primary_10_1016_j_asoc_2025_113655 crossref_primary_10_7717_peerj_cs_2299 crossref_primary_10_1109_ACCESS_2024_3373191 crossref_primary_10_1016_j_eswa_2024_125482 crossref_primary_10_1016_j_sna_2025_116453 crossref_primary_10_1002_clc_23964 crossref_primary_10_1016_j_inffus_2025_102999 crossref_primary_10_1016_j_jmapro_2024_10_041 crossref_primary_10_1016_j_bios_2024_117073 crossref_primary_10_3390_electronics14101941 crossref_primary_10_1109_JIOT_2022_3188771 crossref_primary_10_3390_s24165087 crossref_primary_10_1016_j_ins_2022_11_040 crossref_primary_10_3390_asi6050095 crossref_primary_10_1007_s00034_024_02845_5 crossref_primary_10_1016_j_bspc_2024_106253 crossref_primary_10_3390_s24165245 crossref_primary_10_3390_a15030082 crossref_primary_10_3390_biomimetics10050296 crossref_primary_10_3390_s23020597 crossref_primary_10_1016_j_neuroimage_2024_120793 crossref_primary_10_1145_3729418 crossref_primary_10_1016_j_hroo_2025_05_012 crossref_primary_10_3390_electronics14152921 crossref_primary_10_61384_r_c_a__v5i2_1224 crossref_primary_10_1177_01423312241252459 crossref_primary_10_1109_TIM_2024_3418105 crossref_primary_10_1016_j_bspc_2024_107225 crossref_primary_10_1016_j_bspc_2025_107623 crossref_primary_10_1007_s11431_024_2638_x crossref_primary_10_1088_2057_1976_acd257 crossref_primary_10_1016_j_neucom_2023_126720 crossref_primary_10_1016_j_cmpb_2025_108725 crossref_primary_10_1109_TIM_2025_3551485 crossref_primary_10_1038_s41598_025_94127_6 crossref_primary_10_1016_j_knosys_2024_111396 crossref_primary_10_1088_1361_6579_ac8f12 crossref_primary_10_1016_j_bspc_2024_106141 crossref_primary_10_1016_j_bspc_2024_106262 crossref_primary_10_1038_s41467_024_49939_x crossref_primary_10_1007_s12170_023_00723_4 crossref_primary_10_1016_j_bspc_2025_108420 crossref_primary_10_1109_TIM_2023_3251408 crossref_primary_10_1117_1_JBO_29_1_015004 crossref_primary_10_1016_j_eswa_2024_123763 crossref_primary_10_1016_j_cma_2023_116347 crossref_primary_10_1002_aisy_202500350 crossref_primary_10_1016_j_compbiomed_2024_108235 crossref_primary_10_1016_j_patcog_2024_111311 crossref_primary_10_1080_14680629_2023_2230298 crossref_primary_10_1109_TIM_2025_3552859 crossref_primary_10_1109_RBME_2023_3296938 crossref_primary_10_1016_j_cmpb_2024_108452 crossref_primary_10_1109_ACCESS_2025_3592240 crossref_primary_10_1016_j_jelectrocard_2023_04_004 crossref_primary_10_1016_j_measurement_2025_117707 crossref_primary_10_1016_j_asoc_2025_113638 crossref_primary_10_1038_s41598_024_81992_w crossref_primary_10_1371_journal_pone_0284008 crossref_primary_10_1109_ACCESS_2024_3361031 crossref_primary_10_1109_JBHI_2023_3307870 crossref_primary_10_1111_dom_15578 crossref_primary_10_1016_j_microc_2025_112870 crossref_primary_10_3390_biomimetics9050300 crossref_primary_10_1016_j_knosys_2025_114250 crossref_primary_10_1088_2632_2153_ad5fda crossref_primary_10_1016_j_artmed_2023_102690 crossref_primary_10_1109_TNNLS_2022_3187741 crossref_primary_10_1155_2022_8552358 crossref_primary_10_1109_TIM_2024_3369152 crossref_primary_10_1038_s41467_024_44930_y crossref_primary_10_1016_j_compbiomed_2025_109653 crossref_primary_10_1016_j_bspc_2024_106997 crossref_primary_10_1016_j_eswa_2024_125619 crossref_primary_10_1016_j_measurement_2023_113239 crossref_primary_10_1109_JSAC_2023_3310064 crossref_primary_10_1016_j_jelectrocard_2024_02_003 crossref_primary_10_1371_journal_pone_0325358 crossref_primary_10_1002_mp_16534 crossref_primary_10_1016_j_bspc_2023_105420 crossref_primary_10_1016_j_bspc_2022_103684 crossref_primary_10_1016_j_cmpb_2023_107560 crossref_primary_10_1016_j_heliyon_2024_e27200 crossref_primary_10_17163_ings_n34_2025_09 crossref_primary_10_1016_j_knosys_2023_110323 crossref_primary_10_1016_j_neunet_2024_106551 crossref_primary_10_3390_app15158153 crossref_primary_10_3390_s25175272 crossref_primary_10_1016_j_eswa_2023_122144 crossref_primary_10_3390_app12168368 crossref_primary_10_1016_j_ins_2024_121516 crossref_primary_10_1016_j_patrec_2025_04_023 crossref_primary_10_2478_amns_2024_1834 crossref_primary_10_1109_ACCESS_2024_3518776 crossref_primary_10_1016_j_knosys_2023_110545 crossref_primary_10_2196_38454 crossref_primary_10_1016_j_jksuci_2024_102096 crossref_primary_10_1155_2022_2449956 crossref_primary_10_1016_j_patcog_2021_108385 crossref_primary_10_1109_TMC_2025_3564843 crossref_primary_10_1016_j_ijmedinf_2024_105742 crossref_primary_10_1016_j_cmpb_2024_108315 crossref_primary_10_3389_fphys_2023_1079503 crossref_primary_10_1038_s41467_023_39472_8 crossref_primary_10_1145_3583593 crossref_primary_10_1098_rsta_2024_0330 crossref_primary_10_1109_ACCESS_2023_3280565 crossref_primary_10_1155_2022_3408501 crossref_primary_10_3390_biology11101462 crossref_primary_10_1145_3649448 crossref_primary_10_3390_s22072559 |
| Cites_doi | 10.1016/j.neunet.2017.09.007 10.1109/CVPR.2017.467 10.1161/01.CIR.101.23.e215 10.1109/CVPR.2018.00355 10.1109/ACCESS.2020.2964749 10.1007/s11517-018-1815-2 10.1016/j.knosys.2017.06.003 10.1002/ejhf.561 10.1145/3065386 10.1109/RBME.2013.2264282 10.3390/jimaging4060078 10.1007/s10618-019-00619-1 10.1088/1361-6420/aa9a90 10.1016/j.compbiomed.2020.103726 10.1109/JBHI.2019.2911367 10.3390/electronics9010135 10.1109/CVPR.2016.485 10.1162/neco.1997.9.8.1735 10.1038/323533a0 10.1111/jcpe.12335 10.1016/j.compbiomed.2018.09.009 10.1145/3369798 10.1016/j.asoc.2018.05.018 10.1016/j.artmed.2019.101789 10.1161/CIR.0000000000000659 10.1109/ACCESS.2018.2833841 10.1016/j.compbiomed.2018.06.002 10.1109/JBHI.2019.2942938 10.1016/j.compbiomed.2018.07.001 10.1016/j.compbiomed.2018.05.013 10.1016/j.ins.2017.06.027 10.1016/j.compbiomed.2020.103801 10.1016/j.ins.2016.01.082 10.1109/78.650093 10.1007/s13755-020-00103-x 10.1109/CVPR.2017.17 10.1016/j.eswa.2018.08.011 10.1109/ICNN.1988.23887 10.1109/RBME.2018.2810957 10.1016/j.compbiomed.2018.03.016 10.3390/healthcare8020139 10.1016/j.ijmedinf.2012.05.011 10.1038/nature14539 10.1126/science.1127647 10.1016/j.bbe.2019.06.001 10.1007/s13042-017-0677-5 10.1016/j.compbiomed.2017.12.023 10.1016/j.compbiomed.2020.103866 10.1109/TIM.2017.2769198 10.1109/TBME.2011.2171037 10.1109/TBME.2015.2468589 10.1016/j.ins.2017.04.012 10.1109/ACCESS.2019.2910880 10.1016/j.neunet.2014.09.006 10.1016/j.patrec.2019.02.016 10.1016/j.neucom.2018.06.068 10.18201/ijisae.2016SpecialIssue-146978 10.1016/j.bspc.2018.05.013 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 5, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 5, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2021.107187 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2021_107187 S0950705121004494 |
| GrantInformation_xml | – fundername: Sichuan Science and Technology – fundername: University of Electronic Science and Technology of China |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-b9a9df1966e738e8cde259c906ff74f8599e820ee61908b1826896acb49c45593 |
| ISICitedReferencesCount | 228 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679379400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:49:57 EST 2025 Tue Nov 18 21:50:34 EST 2025 Sat Nov 29 07:11:10 EST 2025 Fri Feb 23 02:47:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Stacked auto-encoders Recurrent neural network Deep belief network Electrocardiogram Convolutional neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-b9a9df1966e738e8cde259c906ff74f8599e820ee61908b1826896acb49c45593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1403-5314 0000-0002-5132-4721 0000-0001-5830-6027 |
| PQID | 2566526753 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2566526753 crossref_primary_10_1016_j_knosys_2021_107187 crossref_citationtrail_10_1016_j_knosys_2021_107187 elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107187 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-05 |
| PublicationDateYYYYMMDD | 2021-09-05 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | LeCun, Bengio, Hinton (b13) 2015; 521 Song, Sun, Wang, Wang (b61) 2019; 36 Mianjy, Arora, Vidal (b99) 2018 Rumelhart, Hinton, Williams (b24) 1986; 323 Silva (b12) 2018 Lecun, Bengio (b39) 1998 He, Zhang, Ren, Sun (b42) 2016 Li, Pang, Wang, Li (b63) 2018; 314 Lih, Jahmunah, San, Ciaccio, Yamakawa, Tanabe (b83) 2020; 103 Faust, Hagiwara, Hong, Lih, Acharya (b17) 2018 Niu, Tang, Sang, Zhang (b69) 2020; 24 X., H. (b67) 2020; 8 Hinton, Salakhutdinov (b25) 2006; 313 Chang, Meng, Haber, Ruthotto, Begert, Holtham (b104) 2017 Guo, Liu, Georgiou, Lew (b27) 2017 Altan, Allahverdi, Kutlu (b58) 2017; 1 Zhao, Zheng, Xu, Wu (b29) 2018 Liu, Huang, Chang, Wang, He (b68) 2018; 45 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b112) 2014; 3 Faust, Shenfield, Kareem, San, Fujita, Acharya (b89) 2018; 102 de Lannoy, Francois, Delbeke, Verleysen (b7) 2012; 59 S. Malladi, I. Sharapov, Fastnorm: Improving numerical stability of deep network training with efficient normalization, in: Proc. ICLR 2018 Conference, 2018. Lobodzinski, Jadalla (b5) 2010; 17 Udit, Barathram, Sabarimalai (b18) 2018; 11 Acharya, Fujita, Lo, Hagiwara, Tan, Adam (b71) 2017; 415–416 Tan, Hagiwara, Pang, Lim, Oh, Adam (b81) 2018; 94 Minematsu, Shimada, Uchiyama, Taniguchi (b30) 2018; 4 Garcia-Garcia, Orts, Oprea, Villena Martinez, Martinez-Gonzalez, Rodríguez (b28) 2018; 70 Dupre, Vincent, Iaizzo (b8) 2005 Rajpurkar, Hannun, Haghpanahi, Bourn, Ng (b64) 2017 Qiao, Li, Zhang, Guo, Li, Zhou (b86) 2020; PP G, T, V (b57) 2018; 56 Murat, Yildirim, Talo, Baloglu, Demir, Acharya (b10) 2020; 120 Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b113) 2016 Oh, Ng, Tan, Acharya (b55) 2018; 102 A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 84–90. Yu, Chasman, Buring, Rose, Ridker (b2) 2015; 42 Salehinejad, Valaee (b100) 2019 Makhzani, Frey (b33) 2013 Acharya, Fujita, Lih, Adam, Tan, Chua (b73) 2017; 132 Deng, Ren, Kong, Bao, Dai (b114) 2017 Wang, Ding, Li, Yuan, Liao, Ma (b14) 2018 M. Sadaj, Inter- And Intra- Patient Ecg Heartbeat Classification for Arrhythmia Detection: A Sequence to Sequence Deep Learning Approach, in: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019. Oh, Ng, Tan, Acharya (b52) 2018 S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. Bernard Lown, Michael D. Klein, Philip I. Hershberg (b4) 1969; 46 Ping, Chen, Wu, Wang, Shu (b93) 2020; 8 Chua (b38) 1998 Cho, Merrienboer, Gulcehre, Ba Hdanau, Bougares, Schwenk (b46) 2014 Hanbay (b50) 2018; 13 Acharya, Fujita, Lih, Hagiwara, Tan, Adam (b74) 2017; 405 Jiang, Zhang, Pi, Dai (b76) 2019 Wang, Liu, Cheng (b97) 2017; 97 D., Y, Y, X, C. (b79) 2020 Wang, Zhang, Liu, Yang, Fu, Wang (b87) 2018; 501 Larochelle, Mandel, Pascanu, Bengio, Lee (b37) 2012; 13 Nurmaini, Darmawahyuni, Noviar, Mukti, Rachmatullah, Firdaus (b54) 2020; 9 Acharya, Fujita, Lo, Raghavendra, Tan, Adam (b70) 2017 Hou, Yang, Wang, Yan (b53) 2019 Yao, Wang, Fan, Liu, Li (b82) 2019; 53 Saadatnejad, Oveisi, Hashemi (b88) 2020; 24 Costa, Oliveira (b6) 2012; 81 S. Zheng, Y. Song, T. Leung, I. Goodfellow, Improving the robustness of deep neural networks via stability training, in: Proc. Computer Vision & Pattern Recognition, 2016. Iandola, Moskewicz, Karayev, Girshick, Keutzer (b41) 2014 Benjamin, Muntner, Alonso, Bittencourt, Callaway, Carson (b1) 2019; 139 M., K. (b45) 1997; 45 Kiranyaz, Ince, Gabbouj (b62) 2016; 63 Bouwmans, Javed, Sultana, Jung (b31) 2018 Guo, Sim, Matuszewski (b85) 2019; 39 S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: Proc. ICLR, 2016. Hubert, R Pipberg, F Arms (b9) 1961 Andersen, Peimankar, Puthusserypady (b84) 2019; 115 Mnih, Larochelle, Hinton (b34) 2012 Yun, Sra, Jadbabaie (b110) 2018 Diakonikolas, Kane, Stewart (b103) 2016 Vidal, Bruna, Giryes, Soatto (b96) 2017 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (b21) 2000; 101 R., L., Y. (b72) 2017 Mathews, Kambhamettu, Barner (b59) 2018; 99 Tomasic, Trobec (b19) 2014 Xu, Biswal, Deshpande, Maher, Sun (b95) 2018 Simonyan, Zisserman (b40) 2014 Murat, Yldrm, Talo, Baloglu, Acharya (b15) 2020; 120 Fischer, Igel (b36) 2012 Ismail Fawaz, Forestier, Weber, Idoumghar, Muller (b43) 2019; 33 Wang (b78) 2019; 102 Elfwing, Uchibe, Doya (b35) 2015; 64 Vincent, Larochelle, Lajoie, Bengio, Manzagol (b32) 2010; 11 Su, Zhang, Chen, Yi, Chen, Gao (b102) 2018 Hong, Zhou, Shang, Xiao, Sun (b16) 2020 Hochreiter, Schmidhuber (b44) 1997; 9 N., S, Y, K. (b117) 2019; 7 Sengupta, Friston (b101) 2018 Altan, Kutlu, Allahverdi (b56) 2016; 6 Haber, Ruthotto (b105) 2018 J. Farhadi, G. Attarodi, J. Dabanloo, M. Mohandespoor, M. Eslamizadeh, Classification of atrial fibrillation using stacked auto encoders neural networks, in: Proc. Classification of Atrial Fibrillation Using Stacked Auto Encoders Neural Networks, 2018. Das, Sen, Maulik (b115) 2020; 53 Minsky, Papert (b23) 1969 Zhai, Tin (b65) 2018; 6 Yıldırım, Pławiak, Tan, Acharya (b75) 2018; 102 Romdhane, Alhichri, Ouni, Atri (b80) 2020; 123 Nouiehed, Razaviyayn (b109) 2018 Sun, Wang, He, Li, Peng, Wang (b90) 2020; 8 Gouda, Brown, McAlister, Finlay (b3) 2016 Taji, Chan, Shirmohammadi (b60) 2018; 67 Goodfellow, Bengio, Courville (b11) 2016 Acharya, Oh, Tan, Gertych, Tan (b20) 2017 B.D. Haeffele, R. Vidal, Global optimality in neural network training, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. Yang, Bai, Lin, Liu, Hou, Liu (b49) 2018; 9 J. Gast, S. Roth, Lightweight probabilistic deep networks, in: Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. Luo, Li, Wang, Cuschieri (b48) 2017; 2017 Baloglu, Talo, Yildirim, Tan, Acharya (b77) 2019; 122 Specht, Probabilistic neural networks for classification, mapping, or associative memory, in: Proc. IEEE International Conference on Neural Networks, 1988. Yildirim (b91) 2018; 96 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b98) 2014; 15 Rosenblatt (b22) 1957 Huang, Chen, Yao, He (b66) 2019; PP Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b47) 2016; 345 Goodfellow (10.1016/j.knosys.2021.107187_b11) 2016 Mathews (10.1016/j.knosys.2021.107187_b59) 2018; 99 Bernard Lown (10.1016/j.knosys.2021.107187_b4) 1969; 46 Chang (10.1016/j.knosys.2021.107187_b104) 2017 He (10.1016/j.knosys.2021.107187_b42) 2016 LeCun (10.1016/j.knosys.2021.107187_b13) 2015; 521 Das (10.1016/j.knosys.2021.107187_b115) 2020; 53 Mnih (10.1016/j.knosys.2021.107187_b34) 2012 Oh (10.1016/j.knosys.2021.107187_b55) 2018; 102 Vincent (10.1016/j.knosys.2021.107187_b32) 2010; 11 Tan (10.1016/j.knosys.2021.107187_b81) 2018; 94 Costa (10.1016/j.knosys.2021.107187_b6) 2012; 81 Yun (10.1016/j.knosys.2021.107187_b110) 2018 Li (10.1016/j.knosys.2021.107187_b63) 2018; 314 Hinton (10.1016/j.knosys.2021.107187_b25) 2006; 313 Lih (10.1016/j.knosys.2021.107187_b83) 2020; 103 Deng (10.1016/j.knosys.2021.107187_b114) 2017 Song (10.1016/j.knosys.2021.107187_b61) 2019; 36 Cho (10.1016/j.knosys.2021.107187_b46) 2014 Udit (10.1016/j.knosys.2021.107187_b18) 2018; 11 Yıldırım (10.1016/j.knosys.2021.107187_b75) 2018; 102 Nurmaini (10.1016/j.knosys.2021.107187_b54) 2020; 9 Srivastava (10.1016/j.knosys.2021.107187_b98) 2014; 15 Hanbay (10.1016/j.knosys.2021.107187_b50) 2018; 13 Huang (10.1016/j.knosys.2021.107187_b66) 2019; PP Xu (10.1016/j.knosys.2021.107187_b95) 2018 Faust (10.1016/j.knosys.2021.107187_b17) 2018 de Lannoy (10.1016/j.knosys.2021.107187_b7) 2012; 59 Oh (10.1016/j.knosys.2021.107187_b52) 2018 Minsky (10.1016/j.knosys.2021.107187_b23) 1969 Elfwing (10.1016/j.knosys.2021.107187_b35) 2015; 64 Mianjy (10.1016/j.knosys.2021.107187_b99) 2018 Guo (10.1016/j.knosys.2021.107187_b27) 2017 Gouda (10.1016/j.knosys.2021.107187_b3) 2016 Garcia-Garcia (10.1016/j.knosys.2021.107187_b28) 2018; 70 Wang (10.1016/j.knosys.2021.107187_b78) 2019; 102 Dupre (10.1016/j.knosys.2021.107187_b8) 2005 Romdhane (10.1016/j.knosys.2021.107187_b80) 2020; 123 Faust (10.1016/j.knosys.2021.107187_b89) 2018; 102 Wang (10.1016/j.knosys.2021.107187_b97) 2017; 97 Su (10.1016/j.knosys.2021.107187_b102) 2018 10.1016/j.knosys.2021.107187_b94 Hubert (10.1016/j.knosys.2021.107187_b9) 1961 Guo (10.1016/j.knosys.2021.107187_b85) 2019; 39 10.1016/j.knosys.2021.107187_b92 Luo (10.1016/j.knosys.2021.107187_b48) 2017; 2017 Kiranyaz (10.1016/j.knosys.2021.107187_b62) 2016; 63 M. (10.1016/j.knosys.2021.107187_b45) 1997; 45 Salehinejad (10.1016/j.knosys.2021.107187_b100) 2019 Jiang (10.1016/j.knosys.2021.107187_b76) 2019 Haber (10.1016/j.knosys.2021.107187_b105) 2018 Rumelhart (10.1016/j.knosys.2021.107187_b24) 1986; 323 Zhao (10.1016/j.knosys.2021.107187_b29) 2018 Acharya (10.1016/j.knosys.2021.107187_b70) 2017 Ismail Fawaz (10.1016/j.knosys.2021.107187_b43) 2019; 33 Lecun (10.1016/j.knosys.2021.107187_b39) 1998 Rahhal (10.1016/j.knosys.2021.107187_b47) 2016; 345 Yu (10.1016/j.knosys.2021.107187_b2) 2015; 42 Rosenblatt (10.1016/j.knosys.2021.107187_b22) 1957 10.1016/j.knosys.2021.107187_b116 Makhzani (10.1016/j.knosys.2021.107187_b33) 2013 Yang (10.1016/j.knosys.2021.107187_b49) 2018; 9 Ping (10.1016/j.knosys.2021.107187_b93) 2020; 8 R. (10.1016/j.knosys.2021.107187_b72) 2017 10.1016/j.knosys.2021.107187_b111 Silva (10.1016/j.knosys.2021.107187_b12) 2018 Chua (10.1016/j.knosys.2021.107187_b38) 1998 Benjamin (10.1016/j.knosys.2021.107187_b1) 2019; 139 10.1016/j.knosys.2021.107187_b118 Saadatnejad (10.1016/j.knosys.2021.107187_b88) 2020; 24 Bouwmans (10.1016/j.knosys.2021.107187_b31) 2018 Nouiehed (10.1016/j.knosys.2021.107187_b109) 2018 Diakonikolas (10.1016/j.knosys.2021.107187_b103) 2016 Goodfellow (10.1016/j.knosys.2021.107187_b112) 2014; 3 Hochreiter (10.1016/j.knosys.2021.107187_b44) 1997; 9 Baloglu (10.1016/j.knosys.2021.107187_b77) 2019; 122 Minematsu (10.1016/j.knosys.2021.107187_b30) 2018; 4 Goldberger (10.1016/j.knosys.2021.107187_b21) 2000; 101 Wang (10.1016/j.knosys.2021.107187_b14) 2018 Andersen (10.1016/j.knosys.2021.107187_b84) 2019; 115 10.1016/j.knosys.2021.107187_b107 10.1016/j.knosys.2021.107187_b106 10.1016/j.knosys.2021.107187_b108 10.1016/j.knosys.2021.107187_b26 Lobodzinski (10.1016/j.knosys.2021.107187_b5) 2010; 17 Liu (10.1016/j.knosys.2021.107187_b68) 2018; 45 Taji (10.1016/j.knosys.2021.107187_b60) 2018; 67 Murat (10.1016/j.knosys.2021.107187_b10) 2020; 120 Hong (10.1016/j.knosys.2021.107187_b16) 2020 Acharya (10.1016/j.knosys.2021.107187_b20) 2017 G (10.1016/j.knosys.2021.107187_b57) 2018; 56 Larochelle (10.1016/j.knosys.2021.107187_b37) 2012; 13 Altan (10.1016/j.knosys.2021.107187_b56) 2016; 6 Sun (10.1016/j.knosys.2021.107187_b90) 2020; 8 Qiao (10.1016/j.knosys.2021.107187_b86) 2020; PP Zhai (10.1016/j.knosys.2021.107187_b65) 2018; 6 Altan (10.1016/j.knosys.2021.107187_b58) 2017; 1 Yao (10.1016/j.knosys.2021.107187_b82) 2019; 53 Rajpurkar (10.1016/j.knosys.2021.107187_b64) 2017 Niu (10.1016/j.knosys.2021.107187_b69) 2020; 24 X. (10.1016/j.knosys.2021.107187_b67) 2020; 8 Yildirim (10.1016/j.knosys.2021.107187_b91) 2018; 96 Vidal (10.1016/j.knosys.2021.107187_b96) 2017 Iandola (10.1016/j.knosys.2021.107187_b41) 2014 Salimans (10.1016/j.knosys.2021.107187_b113) 2016 D. (10.1016/j.knosys.2021.107187_b79) 2020 Fischer (10.1016/j.knosys.2021.107187_b36) 2012 10.1016/j.knosys.2021.107187_b51 N. (10.1016/j.knosys.2021.107187_b117) 2019; 7 Murat (10.1016/j.knosys.2021.107187_b15) 2020; 120 Wang (10.1016/j.knosys.2021.107187_b87) 2018; 501 Acharya (10.1016/j.knosys.2021.107187_b73) 2017; 132 Simonyan (10.1016/j.knosys.2021.107187_b40) 2014 Sengupta (10.1016/j.knosys.2021.107187_b101) 2018 Acharya (10.1016/j.knosys.2021.107187_b71) 2017; 415–416 Acharya (10.1016/j.knosys.2021.107187_b74) 2017; 405 Hou (10.1016/j.knosys.2021.107187_b53) 2019 Tomasic (10.1016/j.knosys.2021.107187_b19) 2014 |
| References_xml | – year: 2018 ident: b52 article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types publication-title: Comput. Biol. Med. – volume: 39 year: 2019 ident: b85 article-title: Inter-patient ECG classification with convolutional and recurrent neural networks publication-title: Biocybern. Biomed. Eng. – volume: 415–416 start-page: 190 year: 2017 end-page: 198 ident: b71 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inform. Sci. – volume: 70 year: 2018 ident: b28 article-title: A survey on deep learning techniques for image and video semantic segmentation publication-title: Appl. Soft Comput. – volume: 67 start-page: 1124 year: 2018 end-page: 1131 ident: b60 article-title: False alarm reduction in atrial fibrillation detection using deep belief networks publication-title: IEEE Trans. Instrum. Meas. – volume: 103 year: 2020 ident: b83 article-title: Comprehensive electrocardiographic diagnosis based on deep learning publication-title: Artif. Intell. Med. – year: 2016 ident: b113 article-title: Improved techniques for training gans – volume: 56 start-page: 1887 year: 2018 end-page: 1898 ident: b57 article-title: Classification of ECG beats using deep belief network and active learning publication-title: Med. Biol. Eng. Comput. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: b74 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inform. Sci. – volume: 46 start-page: 705 year: 1969 end-page: 724 ident: b4 article-title: Coronarv and precoronarv care publication-title: Am. J. Phys. Med. – volume: 53 year: 2019 ident: b82 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inf. Fusion – volume: PP start-page: 1 year: 2020 ident: b86 article-title: A fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithm publication-title: IEEE Access – year: 2017 ident: b104 article-title: Reversible architectures for arbitrarily deep residual neural networks – volume: 3 start-page: 2672 year: 2014 end-page: 2680 ident: b112 article-title: Generative adversarial networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: b11 article-title: Deep learning – reference: S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. – year: 2017 ident: b114 article-title: A hierarchical fused fuzzy deep neural network for data classification publication-title: IEEE Trans. Fuzzy Syst. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b44 article-title: Long short-term memory publication-title: Neural Comput. – volume: PP start-page: 1 year: 2019 ident: b66 article-title: ECG arrhythmia classification using stft-based spectrogram and convolutional neural network publication-title: IEEE Access – year: 2018 ident: b29 article-title: Object detection with deep learning: A review – year: 1957 ident: b22 article-title: The Perceptron - A Perceiving and Recognizing Automaton – year: 2018 ident: b101 article-title: How robust are deep neural networks? – volume: 115 start-page: 465 year: 2019 end-page: 473 ident: b84 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Syst. Appl. – reference: J. Gast, S. Roth, Lightweight probabilistic deep networks, in: Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. – year: 2017 ident: b27 article-title: A review of semantic segmentation using deep neural networks publication-title: Int. J. Multimed. Inf. Retr. – start-page: 199 year: 2005 end-page: 201 ident: b8 article-title: Basic ECG theory, recordings, and interpretation publication-title: Handbook of Cardiac Anatomy, Physiology, and Devices – volume: 120 year: 2020 ident: b15 article-title: Application of deep learning techniques for heartbeats detection using ECG signals- analysis and review publication-title: Comput. Biol. Med. – volume: 17 start-page: 200 year: 2010 end-page: 204 ident: b5 article-title: Integrated heart failure telemonitoring system for homecare publication-title: Cardiol. J. – volume: 8 start-page: 139 year: 2020 ident: b93 article-title: Automatic detection of atrial fibrillation based on CNN-LSTM and shortcut connection publication-title: Healthcare – reference: S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: Proc. ICLR, 2016. – year: 2014 ident: b46 article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation publication-title: Comput. Sci. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b24 article-title: Learning representations by back propagating errors publication-title: Nature – year: 2013 ident: b33 article-title: K-sparse autoencoders publication-title: Comput. Sci. – year: 2020 ident: b16 article-title: Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review publication-title: Comput. Biol. Med. – year: 2014 ident: b40 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – year: 2018 ident: b110 article-title: A critical view of global optimality in deep learning – volume: 24 start-page: 1321 year: 2020 end-page: 1332 ident: b69 article-title: Inter-patient ECG classification with symbolic representations and multi-perspective convolutional neural networks publication-title: IEEE J. Biomed. Health Inform. – year: 2018 ident: b14 article-title: Towards ultra-high performance and energy efficiency of deep learning systems: An algorithm-hardware co-optimization framework – volume: 9 start-page: 1733 year: 2018 end-page: 1740 ident: b49 article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression publication-title: Int. J. Mach. Learn. Cybern. – year: 2019 ident: b76 article-title: A novel multi-module neural network system for imbalanced heartbeats classification publication-title: Expert Syst. Appl. X – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: b91 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. – year: 2018 ident: b12 article-title: Deep learning for corpus callosum segmentation in brain magnetic resonance images – volume: 122 start-page: 23 year: 2019 end-page: 30 ident: b77 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. – volume: 99 start-page: 53 year: 2018 end-page: 62 ident: b59 article-title: A novel application of deep learning for single-lead ECG classification publication-title: Comput. Biol. Med. – volume: 102 start-page: 327 year: 2018 end-page: 335 ident: b89 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. – volume: 63 start-page: 664 year: 2016 end-page: 675 ident: b62 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. – volume: 123 year: 2020 ident: b80 article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss publication-title: Comput. Biol. Med. – year: 1998 ident: b38 article-title: CNN : A paradigm for complexity – start-page: 1 year: 2020 ident: b79 article-title: Non-standardized patch-based ECG lead together with deep learning based algorithm for automatic screening of atrial fibrillation publication-title: IEEE J. Biomed. Health Inform. – volume: 64 start-page: 29 year: 2015 end-page: 38 ident: b35 article-title: Expected energy-based restricted Boltzmann machine for classification publication-title: Neural Netw. – volume: 102 start-page: 411 year: 2018 end-page: 420 ident: b75 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. – year: 2017 ident: b96 article-title: Mathematics of deep learning – volume: 24 start-page: 515 year: 2020 end-page: 523 ident: b88 article-title: LSTM-based ECG classification for continuous monitoring on personal wearable devices publication-title: IEEE J. Biomed. Health Inform. – start-page: 859 year: 2017 end-page: 869 ident: b20 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 102 start-page: 278 year: 2018 end-page: 287 ident: b55 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – year: 2012 ident: b36 article-title: An introduction to restricted Boltzmann machines – start-page: 2565 year: 2018 end-page: 2573 ident: b95 article-title: Raim: Recurrent attentive and intensive model of multimodal patient monitoring data – year: 2012 ident: b34 article-title: Conditional restricted Boltzmann machines for structured output prediction – volume: 102 year: 2019 ident: b78 article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network publication-title: Future Gener. Comput. Syst. – start-page: 1707 year: 2017 end-page: 1836 ident: b64 article-title: Cardiologist-level arrhythmia detection with convolutional neural networks – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b98 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 42 start-page: 21 year: 2015 end-page: 28 ident: b2 article-title: Cardiovascular risks associated with incident and prevalent periodontal disease publication-title: J. Clin. Periodontol. – year: 2016 ident: b3 article-title: Insights into the importance of the electrocardiogram in patients with acute heart failure publication-title: Eur. J. Heart Fail. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b32 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 120 year: 2020 ident: b10 article-title: Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review publication-title: Comput. Biol. Med. – volume: 13 year: 2018 ident: b50 article-title: Deep neural network based approach for ECG classification using hybrid differential features and active learning publication-title: IET Signal Process. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b21 article-title: Physiobank, physiotoolkit, and physionet : Components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 11 start-page: 36 year: 2018 end-page: 52 ident: b18 article-title: A review of signal processing techniques for electrocardiogram signal quality assessment publication-title: IEEE Rev. Biomed. Eng. – volume: 45 start-page: 22 year: 2018 end-page: 32 ident: b68 article-title: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram publication-title: Biomed. Signal Process. Control – start-page: 2 year: 1961 end-page: 130 ident: b9 article-title: Automatic screening of normal and abnormal electrocardiograms by means of a digital electronic computer publication-title: Proc. Soc. Exp. Biol. Med. – volume: 13 start-page: 643 year: 2012 end-page: 669 ident: b37 article-title: Learning algorithms for the classification restricted Boltzmann machine publication-title: J. Mach. Learn. Res. – volume: 9 year: 2020 ident: b54 article-title: Deep learning-based stacked denoising and autoencoder for ECG heartbeat classification publication-title: Electronics – year: 2018 ident: b99 article-title: On the implicit bias of dropout – start-page: 1 year: 2019 ident: b53 article-title: LSTM based auto-encoder model for ECG arrhythmias classification publication-title: IEEE Trans. Instrum. Meas. – volume: 7 start-page: 50431 year: 2019 end-page: 50439 ident: b117 article-title: A probabilistic process neural network and its application in ECG classification publication-title: IEEE Access – volume: 345 start-page: 340 year: 2016 end-page: 354 ident: b47 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inform. Sci. – volume: 59 start-page: 241 year: 2012 end-page: 247 ident: b7 article-title: Weighted conditional random fields for supervised interpatient heartbeat classification publication-title: IEEE Trans. Biomed. Eng. – year: 2016 ident: b103 article-title: Robust learning of fixed-structure Bayesian networks – volume: 53 start-page: 1 year: 2020 end-page: 25 ident: b115 article-title: A survey on fuzzy deep neural networks publication-title: ACM Comput. Surv. – reference: A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 84–90. – year: 2017 ident: b72 article-title: A deep convolutional neural network model to classify heartbeat publication-title: Comput. Biol. Med. – year: 2018 ident: b105 article-title: Stable architectures for deep neural networks publication-title: Inverse Problems – year: 2016 ident: b42 article-title: Deep Residual Learning for Image Recognition – year: 1969 ident: b23 article-title: Perceptrons, vol. 84 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b25 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – year: 1998 ident: b39 article-title: Convolutional networks for images, speech, and time series – year: 2014 ident: b41 article-title: Densenet: Implementing efficient convnet descriptor pyramids – volume: 6 start-page: 27465 year: 2018 end-page: 27472 ident: b65 article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network publication-title: IEEE Access – volume: 139 start-page: e56 year: 2019 end-page: e528 ident: b1 article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association publication-title: Circulation – volume: 2017 start-page: 1 year: 2017 end-page: 13 ident: b48 article-title: Patient-specific deep architectural model for ECG classification publication-title: J. Healthc. Eng. – volume: 36 start-page: 444 year: 2019 end-page: 452 ident: b61 article-title: Automatic classification method of arrhythmia based on discriminative deep belief networks publication-title: J. Biomed. Eng. – reference: S. Malladi, I. Sharapov, Fastnorm: Improving numerical stability of deep network training with efficient normalization, in: Proc. ICLR 2018 Conference, 2018. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b13 article-title: Deep learning publication-title: Nature – volume: 97 start-page: 162 year: 2017 end-page: 172 ident: b97 article-title: Visualizing deep neural network by alternately image blurring and deblurring publication-title: Neural Netw. – reference: . Specht, Probabilistic neural networks for classification, mapping, or associative memory, in: Proc. IEEE International Conference on Neural Networks, 1988. – start-page: 126 year: 2014 end-page: 142 ident: b19 article-title: Electrocardiographic systems with reduced numbers of leads synthesis of the 12-lead ECG publication-title: IEEE Rev. Biomed. Eng. – volume: 132 start-page: 62 year: 2017 end-page: 71 ident: b73 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl.-Based Syst. – volume: 8 start-page: 19 year: 2020 ident: b90 article-title: A stacked LSTM for atrial fibrillation prediction based on multivariate ECGs publication-title: Health Inf. Sci. Syst. – volume: 501 year: 2018 ident: b87 article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning publication-title: Inform. Sci. – year: 2019 ident: b100 article-title: Ising-dropout: A regularization method for training and compression of deep neural networks – reference: S. Zheng, Y. Song, T. Leung, I. Goodfellow, Improving the robustness of deep neural networks via stability training, in: Proc. Computer Vision & Pattern Recognition, 2016. – reference: M. Sadaj, Inter- And Intra- Patient Ecg Heartbeat Classification for Arrhythmia Detection: A Sequence to Sequence Deep Learning Approach, in: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019. – year: 2018 ident: b109 article-title: Learning deep models: Critical points and local openness – start-page: S167739X year: 2017 end-page: S17315248X ident: b70 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. – reference: B.D. Haeffele, R. Vidal, Global optimality in neural network training, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: b45 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. – volume: 33 start-page: 917 year: 2019 end-page: 963 ident: b43 article-title: Deep learning for time series classification: A review publication-title: Data Min. Knowl. Discov. – year: 2018 ident: b102 article-title: Is robustness the cost of accuracy? – A comprehensive study on the robustness of 18 deep image classification models – volume: 6 start-page: 222 year: 2016 end-page: 228 ident: b56 article-title: A multistage deep belief networks application on arrhythmia classification publication-title: Int. J. Intell. Syst. Appl. Eng. – reference: J. Farhadi, G. Attarodi, J. Dabanloo, M. Mohandespoor, M. Eslamizadeh, Classification of atrial fibrillation using stacked auto encoders neural networks, in: Proc. Classification of Atrial Fibrillation Using Stacked Auto Encoders Neural Networks, 2018. – year: 2018 ident: b31 article-title: Deep neural network concepts for background subtraction: A systematic review and comparative evaluation – volume: 8 start-page: 8614 year: 2020 end-page: 8619 ident: b67 article-title: ECG heartbeat classification using convolutional neural networks publication-title: IEEE Access – start-page: S352133162 year: 2018 ident: b17 article-title: Deep learning for healthcare applications based on physiological signals: A review publication-title: Comput. Methods Programs Biomed. – volume: 94 start-page: 19 year: 2018 end-page: 26 ident: b81 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. – volume: 4 start-page: 78 year: 2018 ident: b30 article-title: Analytics of deep neural network-based background subtraction publication-title: J. Imaging – volume: 1 start-page: 29 year: 2017 end-page: 36 ident: b58 article-title: Diagnosis of coronary artery disease using deep belief networks publication-title: Eur. J. Eng. Nat. Sci. – volume: 81 start-page: 612 year: 2012 end-page: 621 ident: b6 article-title: Telecardiology through ubiquitous internet services publication-title: Int. J. Med. Inform. – volume: 314 start-page: 336 year: 2018 end-page: 346 ident: b63 article-title: Patient-specific ECG classification by deeper CNN from generic to dedicated publication-title: Neurocomputing – volume: 97 start-page: 162 year: 2017 ident: 10.1016/j.knosys.2021.107187_b97 article-title: Visualizing deep neural network by alternately image blurring and deblurring publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.09.007 – ident: 10.1016/j.knosys.2021.107187_b108 doi: 10.1109/CVPR.2017.467 – year: 2019 ident: 10.1016/j.knosys.2021.107187_b76 article-title: A novel multi-module neural network system for imbalanced heartbeats classification publication-title: Expert Syst. Appl. X – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.knosys.2021.107187_b21 article-title: Physiobank, physiotoolkit, and physionet : Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – year: 2017 ident: 10.1016/j.knosys.2021.107187_b27 article-title: A review of semantic segmentation using deep neural networks publication-title: Int. J. Multimed. Inf. Retr. – ident: 10.1016/j.knosys.2021.107187_b118 doi: 10.1109/CVPR.2018.00355 – volume: 8 start-page: 8614 year: 2020 ident: 10.1016/j.knosys.2021.107187_b67 article-title: ECG heartbeat classification using convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964749 – volume: 56 start-page: 1887 issue: 10 year: 2018 ident: 10.1016/j.knosys.2021.107187_b57 article-title: Classification of ECG beats using deep belief network and active learning publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1815-2 – volume: 132 start-page: 62 issue: sep.15 year: 2017 ident: 10.1016/j.knosys.2021.107187_b73 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.003 – volume: 46 start-page: 705 issue: 5 year: 1969 ident: 10.1016/j.knosys.2021.107187_b4 article-title: Coronarv and precoronarv care publication-title: Am. J. Phys. Med. – year: 2018 ident: 10.1016/j.knosys.2021.107187_b12 – year: 2018 ident: 10.1016/j.knosys.2021.107187_b99 – issue: 89 year: 2017 ident: 10.1016/j.knosys.2021.107187_b72 article-title: A deep convolutional neural network model to classify heartbeat publication-title: Comput. Biol. Med. – volume: 13 start-page: 643 issue: 1 year: 2012 ident: 10.1016/j.knosys.2021.107187_b37 article-title: Learning algorithms for the classification restricted Boltzmann machine publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.knosys.2021.107187_b3 article-title: Insights into the importance of the electrocardiogram in patients with acute heart failure publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.561 – ident: 10.1016/j.knosys.2021.107187_b26 doi: 10.1145/3065386 – volume: 53 year: 2019 ident: 10.1016/j.knosys.2021.107187_b82 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inf. Fusion – year: 2012 ident: 10.1016/j.knosys.2021.107187_b36 – start-page: 126 issue: 7 year: 2014 ident: 10.1016/j.knosys.2021.107187_b19 article-title: Electrocardiographic systems with reduced numbers of leads synthesis of the 12-lead ECG publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2013.2264282 – volume: 4 start-page: 78 year: 2018 ident: 10.1016/j.knosys.2021.107187_b30 article-title: Analytics of deep neural network-based background subtraction publication-title: J. Imaging doi: 10.3390/jimaging4060078 – year: 2016 ident: 10.1016/j.knosys.2021.107187_b113 – volume: 33 start-page: 917 issue: 4 year: 2019 ident: 10.1016/j.knosys.2021.107187_b43 article-title: Deep learning for time series classification: A review publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-019-00619-1 – year: 2016 ident: 10.1016/j.knosys.2021.107187_b103 – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: 10.1016/j.knosys.2021.107187_b32 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – year: 2017 ident: 10.1016/j.knosys.2021.107187_b104 – volume: PP start-page: 1 year: 2020 ident: 10.1016/j.knosys.2021.107187_b86 article-title: A fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithm publication-title: IEEE Access – year: 2018 ident: 10.1016/j.knosys.2021.107187_b105 article-title: Stable architectures for deep neural networks publication-title: Inverse Problems doi: 10.1088/1361-6420/aa9a90 – volume: 120 year: 2020 ident: 10.1016/j.knosys.2021.107187_b10 article-title: Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103726 – volume: 1 start-page: 29 issue: 2 year: 2017 ident: 10.1016/j.knosys.2021.107187_b58 article-title: Diagnosis of coronary artery disease using deep belief networks publication-title: Eur. J. Eng. Nat. Sci. – volume: 24 start-page: 515 issue: 2 year: 2020 ident: 10.1016/j.knosys.2021.107187_b88 article-title: LSTM-based ECG classification for continuous monitoring on personal wearable devices publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2911367 – volume: 9 year: 2020 ident: 10.1016/j.knosys.2021.107187_b54 article-title: Deep learning-based stacked denoising and autoencoder for ECG heartbeat classification publication-title: Electronics doi: 10.3390/electronics9010135 – start-page: 1707 year: 2017 ident: 10.1016/j.knosys.2021.107187_b64 – start-page: 2565 year: 2018 ident: 10.1016/j.knosys.2021.107187_b95 – ident: 10.1016/j.knosys.2021.107187_b106 doi: 10.1109/CVPR.2016.485 – volume: 13 year: 2018 ident: 10.1016/j.knosys.2021.107187_b50 article-title: Deep neural network based approach for ECG classification using hybrid differential features and active learning publication-title: IET Signal Process. – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.knosys.2021.107187_b44 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2013 ident: 10.1016/j.knosys.2021.107187_b33 article-title: K-sparse autoencoders publication-title: Comput. Sci. – year: 2014 ident: 10.1016/j.knosys.2021.107187_b40 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – volume: 36 start-page: 444 issue: 3 year: 2019 ident: 10.1016/j.knosys.2021.107187_b61 article-title: Automatic classification method of arrhythmia based on discriminative deep belief networks publication-title: J. Biomed. Eng. – year: 2018 ident: 10.1016/j.knosys.2021.107187_b14 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.knosys.2021.107187_b24 article-title: Learning representations by back propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 42 start-page: 21 issue: 1 year: 2015 ident: 10.1016/j.knosys.2021.107187_b2 article-title: Cardiovascular risks associated with incident and prevalent periodontal disease publication-title: J. Clin. Periodontol. doi: 10.1111/jcpe.12335 – volume: 120 year: 2020 ident: 10.1016/j.knosys.2021.107187_b15 article-title: Application of deep learning techniques for heartbeats detection using ECG signals- analysis and review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103726 – volume: 102 start-page: 411 year: 2018 ident: 10.1016/j.knosys.2021.107187_b75 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.09.009 – volume: 53 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.knosys.2021.107187_b115 article-title: A survey on fuzzy deep neural networks publication-title: ACM Comput. Surv. doi: 10.1145/3369798 – volume: 70 year: 2018 ident: 10.1016/j.knosys.2021.107187_b28 article-title: A survey on deep learning techniques for image and video semantic segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.018 – start-page: 199 year: 2005 ident: 10.1016/j.knosys.2021.107187_b8 article-title: Basic ECG theory, recordings, and interpretation – year: 1998 ident: 10.1016/j.knosys.2021.107187_b39 – volume: 103 year: 2020 ident: 10.1016/j.knosys.2021.107187_b83 article-title: Comprehensive electrocardiographic diagnosis based on deep learning publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101789 – year: 2017 ident: 10.1016/j.knosys.2021.107187_b114 article-title: A hierarchical fused fuzzy deep neural network for data classification publication-title: IEEE Trans. Fuzzy Syst. – volume: 139 start-page: e56 issue: 10 year: 2019 ident: 10.1016/j.knosys.2021.107187_b1 article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000659 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.knosys.2021.107187_b48 article-title: Patient-specific deep architectural model for ECG classification publication-title: J. Healthc. Eng. – start-page: 2 issue: 106 year: 1961 ident: 10.1016/j.knosys.2021.107187_b9 article-title: Automatic screening of normal and abnormal electrocardiograms by means of a digital electronic computer publication-title: Proc. Soc. Exp. Biol. Med. – volume: 6 start-page: 27465 year: 2018 ident: 10.1016/j.knosys.2021.107187_b65 article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2833841 – volume: 102 start-page: 278 year: 2018 ident: 10.1016/j.knosys.2021.107187_b55 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.002 – volume: 24 start-page: 1321 issue: 5 year: 2020 ident: 10.1016/j.knosys.2021.107187_b69 article-title: Inter-patient ECG classification with symbolic representations and multi-perspective convolutional neural networks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2942938 – volume: 102 start-page: 327 year: 2018 ident: 10.1016/j.knosys.2021.107187_b89 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.001 – ident: 10.1016/j.knosys.2021.107187_b94 – year: 2019 ident: 10.1016/j.knosys.2021.107187_b100 – year: 1969 ident: 10.1016/j.knosys.2021.107187_b23 – volume: 99 start-page: 53 year: 2018 ident: 10.1016/j.knosys.2021.107187_b59 article-title: A novel application of deep learning for single-lead ECG classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.013 – volume: 17 start-page: 200 issue: 2 year: 2010 ident: 10.1016/j.knosys.2021.107187_b5 article-title: Integrated heart failure telemonitoring system for homecare publication-title: Cardiol. J. – volume: 415–416 start-page: 190 year: 2017 ident: 10.1016/j.knosys.2021.107187_b71 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.06.027 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.knosys.2021.107187_b98 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2020 ident: 10.1016/j.knosys.2021.107187_b16 article-title: Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103801 – volume: 345 start-page: 340 year: 2016 ident: 10.1016/j.knosys.2021.107187_b47 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.01.082 – year: 2018 ident: 10.1016/j.knosys.2021.107187_b110 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 10.1016/j.knosys.2021.107187_b45 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – ident: 10.1016/j.knosys.2021.107187_b51 – volume: 8 start-page: 19 issue: 1 year: 2020 ident: 10.1016/j.knosys.2021.107187_b90 article-title: A stacked LSTM for atrial fibrillation prediction based on multivariate ECGs publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-020-00103-x – year: 2018 ident: 10.1016/j.knosys.2021.107187_b29 – ident: 10.1016/j.knosys.2021.107187_b107 doi: 10.1109/CVPR.2017.17 – volume: 501 year: 2018 ident: 10.1016/j.knosys.2021.107187_b87 article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning publication-title: Inform. Sci. – year: 1998 ident: 10.1016/j.knosys.2021.107187_b38 – volume: 115 start-page: 465 year: 2019 ident: 10.1016/j.knosys.2021.107187_b84 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.011 – ident: 10.1016/j.knosys.2021.107187_b116 doi: 10.1109/ICNN.1988.23887 – start-page: 1 year: 2019 ident: 10.1016/j.knosys.2021.107187_b53 article-title: LSTM based auto-encoder model for ECG arrhythmias classification publication-title: IEEE Trans. Instrum. Meas. – ident: 10.1016/j.knosys.2021.107187_b111 – volume: 11 start-page: 36 year: 2018 ident: 10.1016/j.knosys.2021.107187_b18 article-title: A review of signal processing techniques for electrocardiogram signal quality assessment publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2018.2810957 – year: 2016 ident: 10.1016/j.knosys.2021.107187_b11 – year: 2014 ident: 10.1016/j.knosys.2021.107187_b46 article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation publication-title: Comput. Sci. – volume: 96 start-page: 189 year: 2018 ident: 10.1016/j.knosys.2021.107187_b91 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – volume: 8 start-page: 139 year: 2020 ident: 10.1016/j.knosys.2021.107187_b93 article-title: Automatic detection of atrial fibrillation based on CNN-LSTM and shortcut connection publication-title: Healthcare doi: 10.3390/healthcare8020139 – volume: 81 start-page: 612 issue: 9 year: 2012 ident: 10.1016/j.knosys.2021.107187_b6 article-title: Telecardiology through ubiquitous internet services publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2012.05.011 – year: 2017 ident: 10.1016/j.knosys.2021.107187_b96 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.knosys.2021.107187_b13 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 313 start-page: 504 issue: July year: 2006 ident: 10.1016/j.knosys.2021.107187_b25 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2021.107187_b79 article-title: Non-standardized patch-based ECG lead together with deep learning based algorithm for automatic screening of atrial fibrillation publication-title: IEEE J. Biomed. Health Inform. – volume: 39 year: 2019 ident: 10.1016/j.knosys.2021.107187_b85 article-title: Inter-patient ECG classification with convolutional and recurrent neural networks publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.06.001 – volume: 9 start-page: 1733 issue: 10 year: 2018 ident: 10.1016/j.knosys.2021.107187_b49 article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0677-5 – volume: 94 start-page: 19 year: 2018 ident: 10.1016/j.knosys.2021.107187_b81 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.12.023 – start-page: 859 issue: 89 year: 2017 ident: 10.1016/j.knosys.2021.107187_b20 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 123 year: 2020 ident: 10.1016/j.knosys.2021.107187_b80 article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103866 – volume: 102 year: 2019 ident: 10.1016/j.knosys.2021.107187_b78 article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network publication-title: Future Gener. Comput. Syst. – ident: 10.1016/j.knosys.2021.107187_b92 – volume: 67 start-page: 1124 issue: 5 year: 2018 ident: 10.1016/j.knosys.2021.107187_b60 article-title: False alarm reduction in atrial fibrillation detection using deep belief networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2769198 – volume: PP start-page: 1 issue: 99 year: 2019 ident: 10.1016/j.knosys.2021.107187_b66 article-title: ECG arrhythmia classification using stft-based spectrogram and convolutional neural network publication-title: IEEE Access – year: 2012 ident: 10.1016/j.knosys.2021.107187_b34 – volume: 59 start-page: 241 issue: 1 year: 2012 ident: 10.1016/j.knosys.2021.107187_b7 article-title: Weighted conditional random fields for supervised interpatient heartbeat classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2171037 – year: 2018 ident: 10.1016/j.knosys.2021.107187_b102 – volume: 63 start-page: 664 issue: 3 year: 2016 ident: 10.1016/j.knosys.2021.107187_b62 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.knosys.2021.107187_b74 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.04.012 – start-page: S352133162 year: 2018 ident: 10.1016/j.knosys.2021.107187_b17 article-title: Deep learning for healthcare applications based on physiological signals: A review publication-title: Comput. Methods Programs Biomed. – year: 2018 ident: 10.1016/j.knosys.2021.107187_b101 – year: 2018 ident: 10.1016/j.knosys.2021.107187_b31 – year: 1957 ident: 10.1016/j.knosys.2021.107187_b22 – start-page: S167739X year: 2017 ident: 10.1016/j.knosys.2021.107187_b70 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. – year: 2014 ident: 10.1016/j.knosys.2021.107187_b41 – year: 2018 ident: 10.1016/j.knosys.2021.107187_b109 – volume: 7 start-page: 50431 year: 2019 ident: 10.1016/j.knosys.2021.107187_b117 article-title: A probabilistic process neural network and its application in ECG classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2910880 – volume: 64 start-page: 29 year: 2015 ident: 10.1016/j.knosys.2021.107187_b35 article-title: Expected energy-based restricted Boltzmann machine for classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.006 – volume: 3 start-page: 2672 year: 2014 ident: 10.1016/j.knosys.2021.107187_b112 article-title: Generative adversarial networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 122 start-page: 23 year: 2019 ident: 10.1016/j.knosys.2021.107187_b77 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.02.016 – volume: 314 start-page: 336 year: 2018 ident: 10.1016/j.knosys.2021.107187_b63 article-title: Patient-specific ECG classification by deeper CNN from generic to dedicated publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.068 – volume: 6 start-page: 222 year: 2016 ident: 10.1016/j.knosys.2021.107187_b56 article-title: A multistage deep belief networks application on arrhythmia classification publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2016SpecialIssue-146978 – year: 2016 ident: 10.1016/j.knosys.2021.107187_b42 – volume: 45 start-page: 22 year: 2018 ident: 10.1016/j.knosys.2021.107187_b68 article-title: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.05.013 – year: 2018 ident: 10.1016/j.knosys.2021.107187_b52 article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types publication-title: Comput. Biol. Med. |
| SSID | ssj0002218 |
| Score | 2.68846 |
| Snippet | Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107187 |
| SubjectTerms | Algorithms Artificial neural networks Belief networks Blood vessels Cardiovascular diseases Classification Coders Convolutional neural network Deep belief network Deep learning Diagnosis Electrocardiogram Electrocardiography Errors Experts Extraction Feature extraction Heart diseases Learning Machine learning Medical diagnosis Networks Neural networks Recurrent Recurrent neural network Recurrent neural networks Rhythm Stacked auto-encoders Ultrasonic imaging |
| Title | Deep learning in ECG diagnosis: A review |
| URI | https://dx.doi.org/10.1016/j.knosys.2021.107187 https://www.proquest.com/docview/2566526753 |
| Volume | 227 |
| WOSCitedRecordID | wos000679379400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTwIxFG4QPXhxNy5oevDgpWSmM8O0HkwIorjEaIKReJkMpZhBMxIEl3_v67QdVOJ28DIhpW3KfG3f-x5vQWhHCeku4zHpOAIICo1jwivdLnEroGzDlgIhpotNhOfnrNXiF4XCvo2FeboP05S9vPD-v0INbQC2Cp39A9z5pNAAnwF0eALs8PwV8AdS9m0xiCxcpV47UiZW5VGXPOpI9MH4HwGjmJ5a2xpRcq1jMjznCvdZMlJgtJL0eRw7dm1szY3RO8eezDvg5iG97SV546VOVHAWGzFprAzUzdyogg_mQoeEjkkOa25OqsP6zd0HRNLVwnPiWtYWgl75Dn7pq0qSTt3yuPvHLNifpFPuM2jd0XqRniVSs0R6lik0TcOAsyKarh7XWye5LKY0s_Dmq7fBk5mH3-RqvlJOPonpTPdoLqA5QxpwVYO9iAoyXULztiAHNvfzMtpV2GOLPU5SDNjjHPs9XMUa-RV0dVhv1hrElMIgwvP8IWnzmHe6cFtWZOgxyURHAm8V3IFzFcJhCziXoMtJCXzYYW1FGhmvxKLtc-EDafRWUTF9SOUawgJUOgdoKwxgvh-oAgFUcA96hb5gzF1Hnn0HkTB54lW5kvvoOwTWEclH9XWelB_6h_b1RkbX0zpcBHvmh5Eli0Zkjh18D6wkoEB-vY0_LmQTzY73ewkVh4OR3EIz4mmYPA62zX56A4eLedQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+ECG+diagnosis%3A+A+review&rft.jtitle=Knowledge-based+systems&rft.au=Liu%2C+Xinwen&rft.au=Wang%2C+Huan&rft.au=Li%2C+Zongjin&rft.au=Qin%2C+Lang&rft.date=2021-09-05&rft.issn=0950-7051&rft.volume=227&rft.spage=107187&rft_id=info:doi/10.1016%2Fj.knosys.2021.107187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2021_107187 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |