Deep learning in ECG diagnosis: A review

Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 227; s. 107187
Hlavní autoři: Liu, Xinwen, Wang, Huan, Li, Zongjin, Qin, Lang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 05.09.2021
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to detect the electrical activity of heart, is a very important harmless means of predicting and diagnosing CVDs. However, ECG signal has characteristics of complex and high chaos, making it time-consuming and exhausting to interpret ECG signal even for experts. Hence, computer-aided methods are required to relief human burden and reduce errors caused by tiredness, inter- and intra-difference. Deep learning shows outstanding performance on ECG classification studies recent few years. Its hierarchical architecture enables higher-level features obtained and its strong ability to feature extraction contributes to classification project. Latest studies can achieve higher accuracy and efficiency than manual classification by experts. In this paper, we review the existing studies of deep learning applied in ECG diagnosis according to four typical algorithms: stacked auto-encoders, deep belief network, convolutional neural network and recurrent neural network. We first introduced the mechanism, development and application of the algorithms. Then we review their applications in ECG diagnosis systematically, discussing their highlights and limitations. Our view about future potential development of deep learning in ECG diagnosis is stated in the final part of this paper.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2021.107187