Deep learning in ECG diagnosis: A review

Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 227; s. 107187
Hlavní autoři: Liu, Xinwen, Wang, Huan, Li, Zongjin, Qin, Lang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 05.09.2021
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to detect the electrical activity of heart, is a very important harmless means of predicting and diagnosing CVDs. However, ECG signal has characteristics of complex and high chaos, making it time-consuming and exhausting to interpret ECG signal even for experts. Hence, computer-aided methods are required to relief human burden and reduce errors caused by tiredness, inter- and intra-difference. Deep learning shows outstanding performance on ECG classification studies recent few years. Its hierarchical architecture enables higher-level features obtained and its strong ability to feature extraction contributes to classification project. Latest studies can achieve higher accuracy and efficiency than manual classification by experts. In this paper, we review the existing studies of deep learning applied in ECG diagnosis according to four typical algorithms: stacked auto-encoders, deep belief network, convolutional neural network and recurrent neural network. We first introduced the mechanism, development and application of the algorithms. Then we review their applications in ECG diagnosis systematically, discussing their highlights and limitations. Our view about future potential development of deep learning in ECG diagnosis is stated in the final part of this paper.
AbstractList Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to detect the electrical activity of heart, is a very important harmless means of predicting and diagnosing CVDs. However, ECG signal has characteristics of complex and high chaos, making it time-consuming and exhausting to interpret ECG signal even for experts. Hence, computer-aided methods are required to relief human burden and reduce errors caused by tiredness, inter- and intra-difference. Deep learning shows outstanding performance on ECG classification studies recent few years. Its hierarchical architecture enables higher-level features obtained and its strong ability to feature extraction contributes to classification project. Latest studies can achieve higher accuracy and efficiency than manual classification by experts. In this paper, we review the existing studies of deep learning applied in ECG diagnosis according to four typical algorithms: stacked auto-encoders, deep belief network, convolutional neural network and recurrent neural network. We first introduced the mechanism, development and application of the algorithms. Then we review their applications in ECG diagnosis systematically, discussing their highlights and limitations. Our view about future potential development of deep learning in ECG diagnosis is stated in the final part of this paper.
ArticleNumber 107187
Author Wang, Huan
Liu, Xinwen
Qin, Lang
Li, Zongjin
Author_xml – sequence: 1
  givenname: Xinwen
  orcidid: 0000-0001-5830-6027
  surname: Liu
  fullname: Liu, Xinwen
  email: xinwenliu.carrie@qq.com
  organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Huan
  orcidid: 0000-0002-1403-5314
  surname: Wang
  fullname: Wang, Huan
  email: wh.huanwang@gmail.com
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Zongjin
  orcidid: 0000-0002-5132-4721
  surname: Li
  fullname: Li, Zongjin
  email: lizongjin.alan@qq.com
  organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Lang
  surname: Qin
  fullname: Qin, Lang
  email: qinlang51@126.com
  organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNqFkE1LAzEQhoNUsK3-Aw8LXrxsTbKbrx6E0tYqFLzoOaTZ2ZK1ZmuyVfrvTVlPHvQyA8M87zDPCA186wGha4InBBN-10zefBuPcUIxJWkkiBRnaJgqzUWJ1QANsWI4F5iRCzSKscEYU0rkEN0uAPbZDkzwzm8z57PlfJVVzmxToovTbJYF-HTwdYnOa7OLcPXTx-j1Yfkyf8zXz6un-Wyd26Iou3yjjKpqojgHUUiQtgLKlFWY17Uoa8mUAkkxACcKyw2RlEvFjd2UypaMqWKMbvrcfWg_DhA73bSH4NNJTRnnjHLBirRV9ls2tDEGqPU-uHcTjppgfXKiG9070ScnuneSsOkvzLrOdK71XTBu9x9838OQ3k9Kgo7WgbdQuQC201Xr_g74BmiXfus
CitedBy_id crossref_primary_10_1007_s40031_025_01222_3
crossref_primary_10_1109_ACCESS_2022_3227219
crossref_primary_10_3390_diagnostics13010111
crossref_primary_10_1016_j_chaos_2023_113971
crossref_primary_10_1109_ACCESS_2024_3378730
crossref_primary_10_1109_JBHI_2025_3547531
crossref_primary_10_3390_a16080357
crossref_primary_10_1007_s00217_023_04375_x
crossref_primary_10_1002_mp_16831
crossref_primary_10_1016_j_compbiomed_2024_107977
crossref_primary_10_1016_j_health_2024_100366
crossref_primary_10_1177_20552076241234624
crossref_primary_10_1186_s40537_025_01070_4
crossref_primary_10_1186_s12911_022_01976_6
crossref_primary_10_1016_j_bspc_2024_106609
crossref_primary_10_1038_s41746_024_01130_8
crossref_primary_10_1016_j_bspc_2024_106968
crossref_primary_10_1016_j_compbiomed_2022_106199
crossref_primary_10_1016_j_asoc_2024_112337
crossref_primary_10_1016_j_ins_2024_120881
crossref_primary_10_3390_math11030562
crossref_primary_10_2174_1574893618666230706112826
crossref_primary_10_1016_j_isatra_2021_11_028
crossref_primary_10_1109_TIM_2023_3335528
crossref_primary_10_1109_JIOT_2024_3487977
crossref_primary_10_1016_j_ins_2023_03_099
crossref_primary_10_5674_jjppp_2409si
crossref_primary_10_3390_app13084964
crossref_primary_10_1002_aelm_202201343
crossref_primary_10_1002_cpe_8383
crossref_primary_10_1080_17434440_2022_2115887
crossref_primary_10_1016_j_bspc_2025_107899
crossref_primary_10_1016_j_jelectrocard_2023_11_002
crossref_primary_10_1016_j_asoc_2025_112871
crossref_primary_10_3389_fphys_2023_1253907
crossref_primary_10_3390_jcm11133910
crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1311
crossref_primary_10_1038_s44325_024_00040_8
crossref_primary_10_1016_j_jmsy_2025_05_007
crossref_primary_10_1016_j_eswa_2025_127955
crossref_primary_10_1016_j_compbiomed_2024_109254
crossref_primary_10_1038_s41598_024_63378_0
crossref_primary_10_14814_phy2_16182
crossref_primary_10_1088_1361_6579_acb4dc
crossref_primary_10_1016_j_inffus_2024_102698
crossref_primary_10_1016_j_compbiomed_2023_107908
crossref_primary_10_1016_j_bspc_2025_107602
crossref_primary_10_3390_s23042288
crossref_primary_10_1007_s11042_023_17716_5
crossref_primary_10_1016_j_bspc_2025_107720
crossref_primary_10_1016_j_knosys_2024_112262
crossref_primary_10_1109_ACCESS_2024_3355273
crossref_primary_10_1109_TIM_2024_3365152
crossref_primary_10_1016_j_cvdhj_2023_12_002
crossref_primary_10_1109_ACCESS_2024_3461756
crossref_primary_10_3390_s24248043
crossref_primary_10_1140_epjp_s13360_024_05802_y
crossref_primary_10_3390_s22239347
crossref_primary_10_1007_s10489_024_05881_5
crossref_primary_10_3390_biology11040586
crossref_primary_10_1109_ACCESS_2024_3408282
crossref_primary_10_1109_TIM_2022_3154827
crossref_primary_10_1371_journal_pone_0277932
crossref_primary_10_1007_s10462_025_11259_x
crossref_primary_10_1109_JBHI_2023_3315715
crossref_primary_10_1007_s13369_024_09202_3
crossref_primary_10_1016_j_bspc_2025_108005
crossref_primary_10_1016_j_engappai_2025_111225
crossref_primary_10_1016_j_asoc_2025_113655
crossref_primary_10_7717_peerj_cs_2299
crossref_primary_10_1109_ACCESS_2024_3373191
crossref_primary_10_1016_j_eswa_2024_125482
crossref_primary_10_1016_j_sna_2025_116453
crossref_primary_10_1002_clc_23964
crossref_primary_10_1016_j_inffus_2025_102999
crossref_primary_10_1016_j_jmapro_2024_10_041
crossref_primary_10_1016_j_bios_2024_117073
crossref_primary_10_3390_electronics14101941
crossref_primary_10_1109_JIOT_2022_3188771
crossref_primary_10_3390_s24165087
crossref_primary_10_1016_j_ins_2022_11_040
crossref_primary_10_3390_asi6050095
crossref_primary_10_1007_s00034_024_02845_5
crossref_primary_10_1016_j_bspc_2024_106253
crossref_primary_10_3390_s24165245
crossref_primary_10_3390_a15030082
crossref_primary_10_3390_biomimetics10050296
crossref_primary_10_3390_s23020597
crossref_primary_10_1016_j_neuroimage_2024_120793
crossref_primary_10_1145_3729418
crossref_primary_10_1016_j_hroo_2025_05_012
crossref_primary_10_3390_electronics14152921
crossref_primary_10_61384_r_c_a__v5i2_1224
crossref_primary_10_1177_01423312241252459
crossref_primary_10_1109_TIM_2024_3418105
crossref_primary_10_1016_j_bspc_2024_107225
crossref_primary_10_1016_j_bspc_2025_107623
crossref_primary_10_1007_s11431_024_2638_x
crossref_primary_10_1088_2057_1976_acd257
crossref_primary_10_1016_j_neucom_2023_126720
crossref_primary_10_1016_j_cmpb_2025_108725
crossref_primary_10_1109_TIM_2025_3551485
crossref_primary_10_1038_s41598_025_94127_6
crossref_primary_10_1016_j_knosys_2024_111396
crossref_primary_10_1088_1361_6579_ac8f12
crossref_primary_10_1016_j_bspc_2024_106141
crossref_primary_10_1016_j_bspc_2024_106262
crossref_primary_10_1038_s41467_024_49939_x
crossref_primary_10_1007_s12170_023_00723_4
crossref_primary_10_1016_j_bspc_2025_108420
crossref_primary_10_1109_TIM_2023_3251408
crossref_primary_10_1117_1_JBO_29_1_015004
crossref_primary_10_1016_j_eswa_2024_123763
crossref_primary_10_1016_j_cma_2023_116347
crossref_primary_10_1002_aisy_202500350
crossref_primary_10_1016_j_compbiomed_2024_108235
crossref_primary_10_1016_j_patcog_2024_111311
crossref_primary_10_1080_14680629_2023_2230298
crossref_primary_10_1109_TIM_2025_3552859
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_1016_j_cmpb_2024_108452
crossref_primary_10_1109_ACCESS_2025_3592240
crossref_primary_10_1016_j_jelectrocard_2023_04_004
crossref_primary_10_1016_j_measurement_2025_117707
crossref_primary_10_1016_j_asoc_2025_113638
crossref_primary_10_1038_s41598_024_81992_w
crossref_primary_10_1371_journal_pone_0284008
crossref_primary_10_1109_ACCESS_2024_3361031
crossref_primary_10_1109_JBHI_2023_3307870
crossref_primary_10_1111_dom_15578
crossref_primary_10_1016_j_microc_2025_112870
crossref_primary_10_3390_biomimetics9050300
crossref_primary_10_1016_j_knosys_2025_114250
crossref_primary_10_1088_2632_2153_ad5fda
crossref_primary_10_1016_j_artmed_2023_102690
crossref_primary_10_1109_TNNLS_2022_3187741
crossref_primary_10_1155_2022_8552358
crossref_primary_10_1109_TIM_2024_3369152
crossref_primary_10_1038_s41467_024_44930_y
crossref_primary_10_1016_j_compbiomed_2025_109653
crossref_primary_10_1016_j_bspc_2024_106997
crossref_primary_10_1016_j_eswa_2024_125619
crossref_primary_10_1016_j_measurement_2023_113239
crossref_primary_10_1109_JSAC_2023_3310064
crossref_primary_10_1016_j_jelectrocard_2024_02_003
crossref_primary_10_1371_journal_pone_0325358
crossref_primary_10_1002_mp_16534
crossref_primary_10_1016_j_bspc_2023_105420
crossref_primary_10_1016_j_bspc_2022_103684
crossref_primary_10_1016_j_cmpb_2023_107560
crossref_primary_10_1016_j_heliyon_2024_e27200
crossref_primary_10_17163_ings_n34_2025_09
crossref_primary_10_1016_j_knosys_2023_110323
crossref_primary_10_1016_j_neunet_2024_106551
crossref_primary_10_3390_app15158153
crossref_primary_10_3390_s25175272
crossref_primary_10_1016_j_eswa_2023_122144
crossref_primary_10_3390_app12168368
crossref_primary_10_1016_j_ins_2024_121516
crossref_primary_10_1016_j_patrec_2025_04_023
crossref_primary_10_2478_amns_2024_1834
crossref_primary_10_1109_ACCESS_2024_3518776
crossref_primary_10_1016_j_knosys_2023_110545
crossref_primary_10_2196_38454
crossref_primary_10_1016_j_jksuci_2024_102096
crossref_primary_10_1155_2022_2449956
crossref_primary_10_1016_j_patcog_2021_108385
crossref_primary_10_1109_TMC_2025_3564843
crossref_primary_10_1016_j_ijmedinf_2024_105742
crossref_primary_10_1016_j_cmpb_2024_108315
crossref_primary_10_3389_fphys_2023_1079503
crossref_primary_10_1038_s41467_023_39472_8
crossref_primary_10_1145_3583593
crossref_primary_10_1098_rsta_2024_0330
crossref_primary_10_1109_ACCESS_2023_3280565
crossref_primary_10_1155_2022_3408501
crossref_primary_10_3390_biology11101462
crossref_primary_10_1145_3649448
crossref_primary_10_3390_s22072559
Cites_doi 10.1016/j.neunet.2017.09.007
10.1109/CVPR.2017.467
10.1161/01.CIR.101.23.e215
10.1109/CVPR.2018.00355
10.1109/ACCESS.2020.2964749
10.1007/s11517-018-1815-2
10.1016/j.knosys.2017.06.003
10.1002/ejhf.561
10.1145/3065386
10.1109/RBME.2013.2264282
10.3390/jimaging4060078
10.1007/s10618-019-00619-1
10.1088/1361-6420/aa9a90
10.1016/j.compbiomed.2020.103726
10.1109/JBHI.2019.2911367
10.3390/electronics9010135
10.1109/CVPR.2016.485
10.1162/neco.1997.9.8.1735
10.1038/323533a0
10.1111/jcpe.12335
10.1016/j.compbiomed.2018.09.009
10.1145/3369798
10.1016/j.asoc.2018.05.018
10.1016/j.artmed.2019.101789
10.1161/CIR.0000000000000659
10.1109/ACCESS.2018.2833841
10.1016/j.compbiomed.2018.06.002
10.1109/JBHI.2019.2942938
10.1016/j.compbiomed.2018.07.001
10.1016/j.compbiomed.2018.05.013
10.1016/j.ins.2017.06.027
10.1016/j.compbiomed.2020.103801
10.1016/j.ins.2016.01.082
10.1109/78.650093
10.1007/s13755-020-00103-x
10.1109/CVPR.2017.17
10.1016/j.eswa.2018.08.011
10.1109/ICNN.1988.23887
10.1109/RBME.2018.2810957
10.1016/j.compbiomed.2018.03.016
10.3390/healthcare8020139
10.1016/j.ijmedinf.2012.05.011
10.1038/nature14539
10.1126/science.1127647
10.1016/j.bbe.2019.06.001
10.1007/s13042-017-0677-5
10.1016/j.compbiomed.2017.12.023
10.1016/j.compbiomed.2020.103866
10.1109/TIM.2017.2769198
10.1109/TBME.2011.2171037
10.1109/TBME.2015.2468589
10.1016/j.ins.2017.04.012
10.1109/ACCESS.2019.2910880
10.1016/j.neunet.2014.09.006
10.1016/j.patrec.2019.02.016
10.1016/j.neucom.2018.06.068
10.18201/ijisae.2016SpecialIssue-146978
10.1016/j.bspc.2018.05.013
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 5, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 5, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107187
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107187
S0950705121004494
GrantInformation_xml – fundername: Sichuan Science and Technology
– fundername: University of Electronic Science and Technology of China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-b9a9df1966e738e8cde259c906ff74f8599e820ee61908b1826896acb49c45593
ISICitedReferencesCount 228
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679379400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:49:57 EST 2025
Tue Nov 18 21:50:34 EST 2025
Sat Nov 29 07:11:10 EST 2025
Fri Feb 23 02:47:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Stacked auto-encoders
Recurrent neural network
Deep belief network
Electrocardiogram
Convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-b9a9df1966e738e8cde259c906ff74f8599e820ee61908b1826896acb49c45593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1403-5314
0000-0002-5132-4721
0000-0001-5830-6027
PQID 2566526753
PQPubID 2035257
ParticipantIDs proquest_journals_2566526753
crossref_primary_10_1016_j_knosys_2021_107187
crossref_citationtrail_10_1016_j_knosys_2021_107187
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107187
PublicationCentury 2000
PublicationDate 2021-09-05
PublicationDateYYYYMMDD 2021-09-05
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References LeCun, Bengio, Hinton (b13) 2015; 521
Song, Sun, Wang, Wang (b61) 2019; 36
Mianjy, Arora, Vidal (b99) 2018
Rumelhart, Hinton, Williams (b24) 1986; 323
Silva (b12) 2018
Lecun, Bengio (b39) 1998
He, Zhang, Ren, Sun (b42) 2016
Li, Pang, Wang, Li (b63) 2018; 314
Lih, Jahmunah, San, Ciaccio, Yamakawa, Tanabe (b83) 2020; 103
Faust, Hagiwara, Hong, Lih, Acharya (b17) 2018
Niu, Tang, Sang, Zhang (b69) 2020; 24
X., H. (b67) 2020; 8
Hinton, Salakhutdinov (b25) 2006; 313
Chang, Meng, Haber, Ruthotto, Begert, Holtham (b104) 2017
Guo, Liu, Georgiou, Lew (b27) 2017
Altan, Allahverdi, Kutlu (b58) 2017; 1
Zhao, Zheng, Xu, Wu (b29) 2018
Liu, Huang, Chang, Wang, He (b68) 2018; 45
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b112) 2014; 3
Faust, Shenfield, Kareem, San, Fujita, Acharya (b89) 2018; 102
de Lannoy, Francois, Delbeke, Verleysen (b7) 2012; 59
S. Malladi, I. Sharapov, Fastnorm: Improving numerical stability of deep network training with efficient normalization, in: Proc. ICLR 2018 Conference, 2018.
Lobodzinski, Jadalla (b5) 2010; 17
Udit, Barathram, Sabarimalai (b18) 2018; 11
Acharya, Fujita, Lo, Hagiwara, Tan, Adam (b71) 2017; 415–416
Tan, Hagiwara, Pang, Lim, Oh, Adam (b81) 2018; 94
Minematsu, Shimada, Uchiyama, Taniguchi (b30) 2018; 4
Garcia-Garcia, Orts, Oprea, Villena Martinez, Martinez-Gonzalez, Rodríguez (b28) 2018; 70
Dupre, Vincent, Iaizzo (b8) 2005
Rajpurkar, Hannun, Haghpanahi, Bourn, Ng (b64) 2017
Qiao, Li, Zhang, Guo, Li, Zhou (b86) 2020; PP
G, T, V (b57) 2018; 56
Murat, Yildirim, Talo, Baloglu, Demir, Acharya (b10) 2020; 120
Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b113) 2016
Oh, Ng, Tan, Acharya (b55) 2018; 102
A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 84–90.
Yu, Chasman, Buring, Rose, Ridker (b2) 2015; 42
Salehinejad, Valaee (b100) 2019
Makhzani, Frey (b33) 2013
Acharya, Fujita, Lih, Adam, Tan, Chua (b73) 2017; 132
Deng, Ren, Kong, Bao, Dai (b114) 2017
Wang, Ding, Li, Yuan, Liao, Ma (b14) 2018
M. Sadaj, Inter- And Intra- Patient Ecg Heartbeat Classification for Arrhythmia Detection: A Sequence to Sequence Deep Learning Approach, in: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.
Oh, Ng, Tan, Acharya (b52) 2018
S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
Bernard Lown, Michael D. Klein, Philip I. Hershberg (b4) 1969; 46
Ping, Chen, Wu, Wang, Shu (b93) 2020; 8
Chua (b38) 1998
Cho, Merrienboer, Gulcehre, Ba Hdanau, Bougares, Schwenk (b46) 2014
Hanbay (b50) 2018; 13
Acharya, Fujita, Lih, Hagiwara, Tan, Adam (b74) 2017; 405
Jiang, Zhang, Pi, Dai (b76) 2019
Wang, Liu, Cheng (b97) 2017; 97
D., Y, Y, X, C. (b79) 2020
Wang, Zhang, Liu, Yang, Fu, Wang (b87) 2018; 501
Larochelle, Mandel, Pascanu, Bengio, Lee (b37) 2012; 13
Nurmaini, Darmawahyuni, Noviar, Mukti, Rachmatullah, Firdaus (b54) 2020; 9
Acharya, Fujita, Lo, Raghavendra, Tan, Adam (b70) 2017
Hou, Yang, Wang, Yan (b53) 2019
Yao, Wang, Fan, Liu, Li (b82) 2019; 53
Saadatnejad, Oveisi, Hashemi (b88) 2020; 24
Costa, Oliveira (b6) 2012; 81
S. Zheng, Y. Song, T. Leung, I. Goodfellow, Improving the robustness of deep neural networks via stability training, in: Proc. Computer Vision & Pattern Recognition, 2016.
Iandola, Moskewicz, Karayev, Girshick, Keutzer (b41) 2014
Benjamin, Muntner, Alonso, Bittencourt, Callaway, Carson (b1) 2019; 139
M., K. (b45) 1997; 45
Kiranyaz, Ince, Gabbouj (b62) 2016; 63
Bouwmans, Javed, Sultana, Jung (b31) 2018
Guo, Sim, Matuszewski (b85) 2019; 39
S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: Proc. ICLR, 2016.
Hubert, R Pipberg, F Arms (b9) 1961
Andersen, Peimankar, Puthusserypady (b84) 2019; 115
Mnih, Larochelle, Hinton (b34) 2012
Yun, Sra, Jadbabaie (b110) 2018
Diakonikolas, Kane, Stewart (b103) 2016
Vidal, Bruna, Giryes, Soatto (b96) 2017
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (b21) 2000; 101
R., L., Y. (b72) 2017
Mathews, Kambhamettu, Barner (b59) 2018; 99
Tomasic, Trobec (b19) 2014
Xu, Biswal, Deshpande, Maher, Sun (b95) 2018
Simonyan, Zisserman (b40) 2014
Murat, Yldrm, Talo, Baloglu, Acharya (b15) 2020; 120
Fischer, Igel (b36) 2012
Ismail Fawaz, Forestier, Weber, Idoumghar, Muller (b43) 2019; 33
Wang (b78) 2019; 102
Elfwing, Uchibe, Doya (b35) 2015; 64
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b32) 2010; 11
Su, Zhang, Chen, Yi, Chen, Gao (b102) 2018
Hong, Zhou, Shang, Xiao, Sun (b16) 2020
Hochreiter, Schmidhuber (b44) 1997; 9
N., S, Y, K. (b117) 2019; 7
Sengupta, Friston (b101) 2018
Altan, Kutlu, Allahverdi (b56) 2016; 6
Haber, Ruthotto (b105) 2018
J. Farhadi, G. Attarodi, J. Dabanloo, M. Mohandespoor, M. Eslamizadeh, Classification of atrial fibrillation using stacked auto encoders neural networks, in: Proc. Classification of Atrial Fibrillation Using Stacked Auto Encoders Neural Networks, 2018.
Das, Sen, Maulik (b115) 2020; 53
Minsky, Papert (b23) 1969
Zhai, Tin (b65) 2018; 6
Yıldırım, Pławiak, Tan, Acharya (b75) 2018; 102
Romdhane, Alhichri, Ouni, Atri (b80) 2020; 123
Nouiehed, Razaviyayn (b109) 2018
Sun, Wang, He, Li, Peng, Wang (b90) 2020; 8
Gouda, Brown, McAlister, Finlay (b3) 2016
Taji, Chan, Shirmohammadi (b60) 2018; 67
Goodfellow, Bengio, Courville (b11) 2016
Acharya, Oh, Tan, Gertych, Tan (b20) 2017
B.D. Haeffele, R. Vidal, Global optimality in neural network training, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
Yang, Bai, Lin, Liu, Hou, Liu (b49) 2018; 9
J. Gast, S. Roth, Lightweight probabilistic deep networks, in: Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
Luo, Li, Wang, Cuschieri (b48) 2017; 2017
Baloglu, Talo, Yildirim, Tan, Acharya (b77) 2019; 122
Specht, Probabilistic neural networks for classification, mapping, or associative memory, in: Proc. IEEE International Conference on Neural Networks, 1988.
Yildirim (b91) 2018; 96
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b98) 2014; 15
Rosenblatt (b22) 1957
Huang, Chen, Yao, He (b66) 2019; PP
Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b47) 2016; 345
Goodfellow (10.1016/j.knosys.2021.107187_b11) 2016
Mathews (10.1016/j.knosys.2021.107187_b59) 2018; 99
Bernard Lown (10.1016/j.knosys.2021.107187_b4) 1969; 46
Chang (10.1016/j.knosys.2021.107187_b104) 2017
He (10.1016/j.knosys.2021.107187_b42) 2016
LeCun (10.1016/j.knosys.2021.107187_b13) 2015; 521
Das (10.1016/j.knosys.2021.107187_b115) 2020; 53
Mnih (10.1016/j.knosys.2021.107187_b34) 2012
Oh (10.1016/j.knosys.2021.107187_b55) 2018; 102
Vincent (10.1016/j.knosys.2021.107187_b32) 2010; 11
Tan (10.1016/j.knosys.2021.107187_b81) 2018; 94
Costa (10.1016/j.knosys.2021.107187_b6) 2012; 81
Yun (10.1016/j.knosys.2021.107187_b110) 2018
Li (10.1016/j.knosys.2021.107187_b63) 2018; 314
Hinton (10.1016/j.knosys.2021.107187_b25) 2006; 313
Lih (10.1016/j.knosys.2021.107187_b83) 2020; 103
Deng (10.1016/j.knosys.2021.107187_b114) 2017
Song (10.1016/j.knosys.2021.107187_b61) 2019; 36
Cho (10.1016/j.knosys.2021.107187_b46) 2014
Udit (10.1016/j.knosys.2021.107187_b18) 2018; 11
Yıldırım (10.1016/j.knosys.2021.107187_b75) 2018; 102
Nurmaini (10.1016/j.knosys.2021.107187_b54) 2020; 9
Srivastava (10.1016/j.knosys.2021.107187_b98) 2014; 15
Hanbay (10.1016/j.knosys.2021.107187_b50) 2018; 13
Huang (10.1016/j.knosys.2021.107187_b66) 2019; PP
Xu (10.1016/j.knosys.2021.107187_b95) 2018
Faust (10.1016/j.knosys.2021.107187_b17) 2018
de Lannoy (10.1016/j.knosys.2021.107187_b7) 2012; 59
Oh (10.1016/j.knosys.2021.107187_b52) 2018
Minsky (10.1016/j.knosys.2021.107187_b23) 1969
Elfwing (10.1016/j.knosys.2021.107187_b35) 2015; 64
Mianjy (10.1016/j.knosys.2021.107187_b99) 2018
Guo (10.1016/j.knosys.2021.107187_b27) 2017
Gouda (10.1016/j.knosys.2021.107187_b3) 2016
Garcia-Garcia (10.1016/j.knosys.2021.107187_b28) 2018; 70
Wang (10.1016/j.knosys.2021.107187_b78) 2019; 102
Dupre (10.1016/j.knosys.2021.107187_b8) 2005
Romdhane (10.1016/j.knosys.2021.107187_b80) 2020; 123
Faust (10.1016/j.knosys.2021.107187_b89) 2018; 102
Wang (10.1016/j.knosys.2021.107187_b97) 2017; 97
Su (10.1016/j.knosys.2021.107187_b102) 2018
10.1016/j.knosys.2021.107187_b94
Hubert (10.1016/j.knosys.2021.107187_b9) 1961
Guo (10.1016/j.knosys.2021.107187_b85) 2019; 39
10.1016/j.knosys.2021.107187_b92
Luo (10.1016/j.knosys.2021.107187_b48) 2017; 2017
Kiranyaz (10.1016/j.knosys.2021.107187_b62) 2016; 63
M. (10.1016/j.knosys.2021.107187_b45) 1997; 45
Salehinejad (10.1016/j.knosys.2021.107187_b100) 2019
Jiang (10.1016/j.knosys.2021.107187_b76) 2019
Haber (10.1016/j.knosys.2021.107187_b105) 2018
Rumelhart (10.1016/j.knosys.2021.107187_b24) 1986; 323
Zhao (10.1016/j.knosys.2021.107187_b29) 2018
Acharya (10.1016/j.knosys.2021.107187_b70) 2017
Ismail Fawaz (10.1016/j.knosys.2021.107187_b43) 2019; 33
Lecun (10.1016/j.knosys.2021.107187_b39) 1998
Rahhal (10.1016/j.knosys.2021.107187_b47) 2016; 345
Yu (10.1016/j.knosys.2021.107187_b2) 2015; 42
Rosenblatt (10.1016/j.knosys.2021.107187_b22) 1957
10.1016/j.knosys.2021.107187_b116
Makhzani (10.1016/j.knosys.2021.107187_b33) 2013
Yang (10.1016/j.knosys.2021.107187_b49) 2018; 9
Ping (10.1016/j.knosys.2021.107187_b93) 2020; 8
R. (10.1016/j.knosys.2021.107187_b72) 2017
10.1016/j.knosys.2021.107187_b111
Silva (10.1016/j.knosys.2021.107187_b12) 2018
Chua (10.1016/j.knosys.2021.107187_b38) 1998
Benjamin (10.1016/j.knosys.2021.107187_b1) 2019; 139
10.1016/j.knosys.2021.107187_b118
Saadatnejad (10.1016/j.knosys.2021.107187_b88) 2020; 24
Bouwmans (10.1016/j.knosys.2021.107187_b31) 2018
Nouiehed (10.1016/j.knosys.2021.107187_b109) 2018
Diakonikolas (10.1016/j.knosys.2021.107187_b103) 2016
Goodfellow (10.1016/j.knosys.2021.107187_b112) 2014; 3
Hochreiter (10.1016/j.knosys.2021.107187_b44) 1997; 9
Baloglu (10.1016/j.knosys.2021.107187_b77) 2019; 122
Minematsu (10.1016/j.knosys.2021.107187_b30) 2018; 4
Goldberger (10.1016/j.knosys.2021.107187_b21) 2000; 101
Wang (10.1016/j.knosys.2021.107187_b14) 2018
Andersen (10.1016/j.knosys.2021.107187_b84) 2019; 115
10.1016/j.knosys.2021.107187_b107
10.1016/j.knosys.2021.107187_b106
10.1016/j.knosys.2021.107187_b108
10.1016/j.knosys.2021.107187_b26
Lobodzinski (10.1016/j.knosys.2021.107187_b5) 2010; 17
Liu (10.1016/j.knosys.2021.107187_b68) 2018; 45
Taji (10.1016/j.knosys.2021.107187_b60) 2018; 67
Murat (10.1016/j.knosys.2021.107187_b10) 2020; 120
Hong (10.1016/j.knosys.2021.107187_b16) 2020
Acharya (10.1016/j.knosys.2021.107187_b20) 2017
G (10.1016/j.knosys.2021.107187_b57) 2018; 56
Larochelle (10.1016/j.knosys.2021.107187_b37) 2012; 13
Altan (10.1016/j.knosys.2021.107187_b56) 2016; 6
Sun (10.1016/j.knosys.2021.107187_b90) 2020; 8
Qiao (10.1016/j.knosys.2021.107187_b86) 2020; PP
Zhai (10.1016/j.knosys.2021.107187_b65) 2018; 6
Altan (10.1016/j.knosys.2021.107187_b58) 2017; 1
Yao (10.1016/j.knosys.2021.107187_b82) 2019; 53
Rajpurkar (10.1016/j.knosys.2021.107187_b64) 2017
Niu (10.1016/j.knosys.2021.107187_b69) 2020; 24
X. (10.1016/j.knosys.2021.107187_b67) 2020; 8
Yildirim (10.1016/j.knosys.2021.107187_b91) 2018; 96
Vidal (10.1016/j.knosys.2021.107187_b96) 2017
Iandola (10.1016/j.knosys.2021.107187_b41) 2014
Salimans (10.1016/j.knosys.2021.107187_b113) 2016
D. (10.1016/j.knosys.2021.107187_b79) 2020
Fischer (10.1016/j.knosys.2021.107187_b36) 2012
10.1016/j.knosys.2021.107187_b51
N. (10.1016/j.knosys.2021.107187_b117) 2019; 7
Murat (10.1016/j.knosys.2021.107187_b15) 2020; 120
Wang (10.1016/j.knosys.2021.107187_b87) 2018; 501
Acharya (10.1016/j.knosys.2021.107187_b73) 2017; 132
Simonyan (10.1016/j.knosys.2021.107187_b40) 2014
Sengupta (10.1016/j.knosys.2021.107187_b101) 2018
Acharya (10.1016/j.knosys.2021.107187_b71) 2017; 415–416
Acharya (10.1016/j.knosys.2021.107187_b74) 2017; 405
Hou (10.1016/j.knosys.2021.107187_b53) 2019
Tomasic (10.1016/j.knosys.2021.107187_b19) 2014
References_xml – year: 2018
  ident: b52
  article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
– volume: 39
  year: 2019
  ident: b85
  article-title: Inter-patient ECG classification with convolutional and recurrent neural networks
  publication-title: Biocybern. Biomed. Eng.
– volume: 415–416
  start-page: 190
  year: 2017
  end-page: 198
  ident: b71
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
– volume: 70
  year: 2018
  ident: b28
  article-title: A survey on deep learning techniques for image and video semantic segmentation
  publication-title: Appl. Soft Comput.
– volume: 67
  start-page: 1124
  year: 2018
  end-page: 1131
  ident: b60
  article-title: False alarm reduction in atrial fibrillation detection using deep belief networks
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 103
  year: 2020
  ident: b83
  article-title: Comprehensive electrocardiographic diagnosis based on deep learning
  publication-title: Artif. Intell. Med.
– year: 2016
  ident: b113
  article-title: Improved techniques for training gans
– volume: 56
  start-page: 1887
  year: 2018
  end-page: 1898
  ident: b57
  article-title: Classification of ECG beats using deep belief network and active learning
  publication-title: Med. Biol. Eng. Comput.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: b74
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inform. Sci.
– volume: 46
  start-page: 705
  year: 1969
  end-page: 724
  ident: b4
  article-title: Coronarv and precoronarv care
  publication-title: Am. J. Phys. Med.
– volume: 53
  year: 2019
  ident: b82
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
– volume: PP
  start-page: 1
  year: 2020
  ident: b86
  article-title: A fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithm
  publication-title: IEEE Access
– year: 2017
  ident: b104
  article-title: Reversible architectures for arbitrarily deep residual neural networks
– volume: 3
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: b112
  article-title: Generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: b11
  article-title: Deep learning
– reference: S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
– year: 2017
  ident: b114
  article-title: A hierarchical fused fuzzy deep neural network for data classification
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b44
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: PP
  start-page: 1
  year: 2019
  ident: b66
  article-title: ECG arrhythmia classification using stft-based spectrogram and convolutional neural network
  publication-title: IEEE Access
– year: 2018
  ident: b29
  article-title: Object detection with deep learning: A review
– year: 1957
  ident: b22
  article-title: The Perceptron - A Perceiving and Recognizing Automaton
– year: 2018
  ident: b101
  article-title: How robust are deep neural networks?
– volume: 115
  start-page: 465
  year: 2019
  end-page: 473
  ident: b84
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
– reference: J. Gast, S. Roth, Lightweight probabilistic deep networks, in: Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
– year: 2017
  ident: b27
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimed. Inf. Retr.
– start-page: 199
  year: 2005
  end-page: 201
  ident: b8
  article-title: Basic ECG theory, recordings, and interpretation
  publication-title: Handbook of Cardiac Anatomy, Physiology, and Devices
– volume: 120
  year: 2020
  ident: b15
  article-title: Application of deep learning techniques for heartbeats detection using ECG signals- analysis and review
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 200
  year: 2010
  end-page: 204
  ident: b5
  article-title: Integrated heart failure telemonitoring system for homecare
  publication-title: Cardiol. J.
– volume: 8
  start-page: 139
  year: 2020
  ident: b93
  article-title: Automatic detection of atrial fibrillation based on CNN-LSTM and shortcut connection
  publication-title: Healthcare
– reference: S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: Proc. ICLR, 2016.
– year: 2014
  ident: b46
  article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation
  publication-title: Comput. Sci.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b24
  article-title: Learning representations by back propagating errors
  publication-title: Nature
– year: 2013
  ident: b33
  article-title: K-sparse autoencoders
  publication-title: Comput. Sci.
– year: 2020
  ident: b16
  article-title: Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review
  publication-title: Comput. Biol. Med.
– year: 2014
  ident: b40
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comput. Sci.
– year: 2018
  ident: b110
  article-title: A critical view of global optimality in deep learning
– volume: 24
  start-page: 1321
  year: 2020
  end-page: 1332
  ident: b69
  article-title: Inter-patient ECG classification with symbolic representations and multi-perspective convolutional neural networks
  publication-title: IEEE J. Biomed. Health Inform.
– year: 2018
  ident: b14
  article-title: Towards ultra-high performance and energy efficiency of deep learning systems: An algorithm-hardware co-optimization framework
– volume: 9
  start-page: 1733
  year: 2018
  end-page: 1740
  ident: b49
  article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression
  publication-title: Int. J. Mach. Learn. Cybern.
– year: 2019
  ident: b76
  article-title: A novel multi-module neural network system for imbalanced heartbeats classification
  publication-title: Expert Syst. Appl. X
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: b91
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
– year: 2018
  ident: b12
  article-title: Deep learning for corpus callosum segmentation in brain magnetic resonance images
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: b77
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
– volume: 99
  start-page: 53
  year: 2018
  end-page: 62
  ident: b59
  article-title: A novel application of deep learning for single-lead ECG classification
  publication-title: Comput. Biol. Med.
– volume: 102
  start-page: 327
  year: 2018
  end-page: 335
  ident: b89
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
– volume: 63
  start-page: 664
  year: 2016
  end-page: 675
  ident: b62
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 123
  year: 2020
  ident: b80
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
– year: 1998
  ident: b38
  article-title: CNN : A paradigm for complexity
– start-page: 1
  year: 2020
  ident: b79
  article-title: Non-standardized patch-based ECG lead together with deep learning based algorithm for automatic screening of atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 64
  start-page: 29
  year: 2015
  end-page: 38
  ident: b35
  article-title: Expected energy-based restricted Boltzmann machine for classification
  publication-title: Neural Netw.
– volume: 102
  start-page: 411
  year: 2018
  end-page: 420
  ident: b75
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
– year: 2017
  ident: b96
  article-title: Mathematics of deep learning
– volume: 24
  start-page: 515
  year: 2020
  end-page: 523
  ident: b88
  article-title: LSTM-based ECG classification for continuous monitoring on personal wearable devices
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 859
  year: 2017
  end-page: 869
  ident: b20
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: b55
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– year: 2012
  ident: b36
  article-title: An introduction to restricted Boltzmann machines
– start-page: 2565
  year: 2018
  end-page: 2573
  ident: b95
  article-title: Raim: Recurrent attentive and intensive model of multimodal patient monitoring data
– year: 2012
  ident: b34
  article-title: Conditional restricted Boltzmann machines for structured output prediction
– volume: 102
  year: 2019
  ident: b78
  article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network
  publication-title: Future Gener. Comput. Syst.
– start-page: 1707
  year: 2017
  end-page: 1836
  ident: b64
  article-title: Cardiologist-level arrhythmia detection with convolutional neural networks
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b98
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 42
  start-page: 21
  year: 2015
  end-page: 28
  ident: b2
  article-title: Cardiovascular risks associated with incident and prevalent periodontal disease
  publication-title: J. Clin. Periodontol.
– year: 2016
  ident: b3
  article-title: Insights into the importance of the electrocardiogram in patients with acute heart failure
  publication-title: Eur. J. Heart Fail.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b32
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 120
  year: 2020
  ident: b10
  article-title: Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review
  publication-title: Comput. Biol. Med.
– volume: 13
  year: 2018
  ident: b50
  article-title: Deep neural network based approach for ECG classification using hybrid differential features and active learning
  publication-title: IET Signal Process.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b21
  article-title: Physiobank, physiotoolkit, and physionet : Components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 11
  start-page: 36
  year: 2018
  end-page: 52
  ident: b18
  article-title: A review of signal processing techniques for electrocardiogram signal quality assessment
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 45
  start-page: 22
  year: 2018
  end-page: 32
  ident: b68
  article-title: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram
  publication-title: Biomed. Signal Process. Control
– start-page: 2
  year: 1961
  end-page: 130
  ident: b9
  article-title: Automatic screening of normal and abnormal electrocardiograms by means of a digital electronic computer
  publication-title: Proc. Soc. Exp. Biol. Med.
– volume: 13
  start-page: 643
  year: 2012
  end-page: 669
  ident: b37
  article-title: Learning algorithms for the classification restricted Boltzmann machine
  publication-title: J. Mach. Learn. Res.
– volume: 9
  year: 2020
  ident: b54
  article-title: Deep learning-based stacked denoising and autoencoder for ECG heartbeat classification
  publication-title: Electronics
– year: 2018
  ident: b99
  article-title: On the implicit bias of dropout
– start-page: 1
  year: 2019
  ident: b53
  article-title: LSTM based auto-encoder model for ECG arrhythmias classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 7
  start-page: 50431
  year: 2019
  end-page: 50439
  ident: b117
  article-title: A probabilistic process neural network and its application in ECG classification
  publication-title: IEEE Access
– volume: 345
  start-page: 340
  year: 2016
  end-page: 354
  ident: b47
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inform. Sci.
– volume: 59
  start-page: 241
  year: 2012
  end-page: 247
  ident: b7
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2016
  ident: b103
  article-title: Robust learning of fixed-structure Bayesian networks
– volume: 53
  start-page: 1
  year: 2020
  end-page: 25
  ident: b115
  article-title: A survey on fuzzy deep neural networks
  publication-title: ACM Comput. Surv.
– reference: A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 84–90.
– year: 2017
  ident: b72
  article-title: A deep convolutional neural network model to classify heartbeat
  publication-title: Comput. Biol. Med.
– year: 2018
  ident: b105
  article-title: Stable architectures for deep neural networks
  publication-title: Inverse Problems
– year: 2016
  ident: b42
  article-title: Deep Residual Learning for Image Recognition
– year: 1969
  ident: b23
  article-title: Perceptrons, vol. 84
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b25
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 1998
  ident: b39
  article-title: Convolutional networks for images, speech, and time series
– year: 2014
  ident: b41
  article-title: Densenet: Implementing efficient convnet descriptor pyramids
– volume: 6
  start-page: 27465
  year: 2018
  end-page: 27472
  ident: b65
  article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network
  publication-title: IEEE Access
– volume: 139
  start-page: e56
  year: 2019
  end-page: e528
  ident: b1
  article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association
  publication-title: Circulation
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 13
  ident: b48
  article-title: Patient-specific deep architectural model for ECG classification
  publication-title: J. Healthc. Eng.
– volume: 36
  start-page: 444
  year: 2019
  end-page: 452
  ident: b61
  article-title: Automatic classification method of arrhythmia based on discriminative deep belief networks
  publication-title: J. Biomed. Eng.
– reference: S. Malladi, I. Sharapov, Fastnorm: Improving numerical stability of deep network training with efficient normalization, in: Proc. ICLR 2018 Conference, 2018.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b13
  article-title: Deep learning
  publication-title: Nature
– volume: 97
  start-page: 162
  year: 2017
  end-page: 172
  ident: b97
  article-title: Visualizing deep neural network by alternately image blurring and deblurring
  publication-title: Neural Netw.
– reference: . Specht, Probabilistic neural networks for classification, mapping, or associative memory, in: Proc. IEEE International Conference on Neural Networks, 1988.
– start-page: 126
  year: 2014
  end-page: 142
  ident: b19
  article-title: Electrocardiographic systems with reduced numbers of leads synthesis of the 12-lead ECG
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 132
  start-page: 62
  year: 2017
  end-page: 71
  ident: b73
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl.-Based Syst.
– volume: 8
  start-page: 19
  year: 2020
  ident: b90
  article-title: A stacked LSTM for atrial fibrillation prediction based on multivariate ECGs
  publication-title: Health Inf. Sci. Syst.
– volume: 501
  year: 2018
  ident: b87
  article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning
  publication-title: Inform. Sci.
– year: 2019
  ident: b100
  article-title: Ising-dropout: A regularization method for training and compression of deep neural networks
– reference: S. Zheng, Y. Song, T. Leung, I. Goodfellow, Improving the robustness of deep neural networks via stability training, in: Proc. Computer Vision & Pattern Recognition, 2016.
– reference: M. Sadaj, Inter- And Intra- Patient Ecg Heartbeat Classification for Arrhythmia Detection: A Sequence to Sequence Deep Learning Approach, in: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.
– year: 2018
  ident: b109
  article-title: Learning deep models: Critical points and local openness
– start-page: S167739X
  year: 2017
  end-page: S17315248X
  ident: b70
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
– reference: B.D. Haeffele, R. Vidal, Global optimality in neural network training, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: b45
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 33
  start-page: 917
  year: 2019
  end-page: 963
  ident: b43
  article-title: Deep learning for time series classification: A review
  publication-title: Data Min. Knowl. Discov.
– year: 2018
  ident: b102
  article-title: Is robustness the cost of accuracy? – A comprehensive study on the robustness of 18 deep image classification models
– volume: 6
  start-page: 222
  year: 2016
  end-page: 228
  ident: b56
  article-title: A multistage deep belief networks application on arrhythmia classification
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– reference: J. Farhadi, G. Attarodi, J. Dabanloo, M. Mohandespoor, M. Eslamizadeh, Classification of atrial fibrillation using stacked auto encoders neural networks, in: Proc. Classification of Atrial Fibrillation Using Stacked Auto Encoders Neural Networks, 2018.
– year: 2018
  ident: b31
  article-title: Deep neural network concepts for background subtraction: A systematic review and comparative evaluation
– volume: 8
  start-page: 8614
  year: 2020
  end-page: 8619
  ident: b67
  article-title: ECG heartbeat classification using convolutional neural networks
  publication-title: IEEE Access
– start-page: S352133162
  year: 2018
  ident: b17
  article-title: Deep learning for healthcare applications based on physiological signals: A review
  publication-title: Comput. Methods Programs Biomed.
– volume: 94
  start-page: 19
  year: 2018
  end-page: 26
  ident: b81
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
– volume: 4
  start-page: 78
  year: 2018
  ident: b30
  article-title: Analytics of deep neural network-based background subtraction
  publication-title: J. Imaging
– volume: 1
  start-page: 29
  year: 2017
  end-page: 36
  ident: b58
  article-title: Diagnosis of coronary artery disease using deep belief networks
  publication-title: Eur. J. Eng. Nat. Sci.
– volume: 81
  start-page: 612
  year: 2012
  end-page: 621
  ident: b6
  article-title: Telecardiology through ubiquitous internet services
  publication-title: Int. J. Med. Inform.
– volume: 314
  start-page: 336
  year: 2018
  end-page: 346
  ident: b63
  article-title: Patient-specific ECG classification by deeper CNN from generic to dedicated
  publication-title: Neurocomputing
– volume: 97
  start-page: 162
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b97
  article-title: Visualizing deep neural network by alternately image blurring and deblurring
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.09.007
– ident: 10.1016/j.knosys.2021.107187_b108
  doi: 10.1109/CVPR.2017.467
– year: 2019
  ident: 10.1016/j.knosys.2021.107187_b76
  article-title: A novel multi-module neural network system for imbalanced heartbeats classification
  publication-title: Expert Syst. Appl. X
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.knosys.2021.107187_b21
  article-title: Physiobank, physiotoolkit, and physionet : Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– year: 2017
  ident: 10.1016/j.knosys.2021.107187_b27
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimed. Inf. Retr.
– ident: 10.1016/j.knosys.2021.107187_b118
  doi: 10.1109/CVPR.2018.00355
– volume: 8
  start-page: 8614
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b67
  article-title: ECG heartbeat classification using convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964749
– volume: 56
  start-page: 1887
  issue: 10
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b57
  article-title: Classification of ECG beats using deep belief network and active learning
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1815-2
– volume: 132
  start-page: 62
  issue: sep.15
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b73
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.003
– volume: 46
  start-page: 705
  issue: 5
  year: 1969
  ident: 10.1016/j.knosys.2021.107187_b4
  article-title: Coronarv and precoronarv care
  publication-title: Am. J. Phys. Med.
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b12
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b99
– issue: 89
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b72
  article-title: A deep convolutional neural network model to classify heartbeat
  publication-title: Comput. Biol. Med.
– volume: 13
  start-page: 643
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2021.107187_b37
  article-title: Learning algorithms for the classification restricted Boltzmann machine
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.knosys.2021.107187_b3
  article-title: Insights into the importance of the electrocardiogram in patients with acute heart failure
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.561
– ident: 10.1016/j.knosys.2021.107187_b26
  doi: 10.1145/3065386
– volume: 53
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b82
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
– year: 2012
  ident: 10.1016/j.knosys.2021.107187_b36
– start-page: 126
  issue: 7
  year: 2014
  ident: 10.1016/j.knosys.2021.107187_b19
  article-title: Electrocardiographic systems with reduced numbers of leads synthesis of the 12-lead ECG
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2013.2264282
– volume: 4
  start-page: 78
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b30
  article-title: Analytics of deep neural network-based background subtraction
  publication-title: J. Imaging
  doi: 10.3390/jimaging4060078
– year: 2016
  ident: 10.1016/j.knosys.2021.107187_b113
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b43
  article-title: Deep learning for time series classification: A review
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– year: 2016
  ident: 10.1016/j.knosys.2021.107187_b103
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 10.1016/j.knosys.2021.107187_b32
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.knosys.2021.107187_b104
– volume: PP
  start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b86
  article-title: A fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithm
  publication-title: IEEE Access
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b105
  article-title: Stable architectures for deep neural networks
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aa9a90
– volume: 120
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b10
  article-title: Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103726
– volume: 1
  start-page: 29
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b58
  article-title: Diagnosis of coronary artery disease using deep belief networks
  publication-title: Eur. J. Eng. Nat. Sci.
– volume: 24
  start-page: 515
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b88
  article-title: LSTM-based ECG classification for continuous monitoring on personal wearable devices
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2911367
– volume: 9
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b54
  article-title: Deep learning-based stacked denoising and autoencoder for ECG heartbeat classification
  publication-title: Electronics
  doi: 10.3390/electronics9010135
– start-page: 1707
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b64
– start-page: 2565
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b95
– ident: 10.1016/j.knosys.2021.107187_b106
  doi: 10.1109/CVPR.2016.485
– volume: 13
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b50
  article-title: Deep neural network based approach for ECG classification using hybrid differential features and active learning
  publication-title: IET Signal Process.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.knosys.2021.107187_b44
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2013
  ident: 10.1016/j.knosys.2021.107187_b33
  article-title: K-sparse autoencoders
  publication-title: Comput. Sci.
– year: 2014
  ident: 10.1016/j.knosys.2021.107187_b40
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comput. Sci.
– volume: 36
  start-page: 444
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b61
  article-title: Automatic classification method of arrhythmia based on discriminative deep belief networks
  publication-title: J. Biomed. Eng.
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b14
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.knosys.2021.107187_b24
  article-title: Learning representations by back propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 42
  start-page: 21
  issue: 1
  year: 2015
  ident: 10.1016/j.knosys.2021.107187_b2
  article-title: Cardiovascular risks associated with incident and prevalent periodontal disease
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/jcpe.12335
– volume: 120
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b15
  article-title: Application of deep learning techniques for heartbeats detection using ECG signals- analysis and review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103726
– volume: 102
  start-page: 411
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b75
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b115
  article-title: A survey on fuzzy deep neural networks
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3369798
– volume: 70
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b28
  article-title: A survey on deep learning techniques for image and video semantic segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.018
– start-page: 199
  year: 2005
  ident: 10.1016/j.knosys.2021.107187_b8
  article-title: Basic ECG theory, recordings, and interpretation
– year: 1998
  ident: 10.1016/j.knosys.2021.107187_b39
– volume: 103
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b83
  article-title: Comprehensive electrocardiographic diagnosis based on deep learning
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101789
– year: 2017
  ident: 10.1016/j.knosys.2021.107187_b114
  article-title: A hierarchical fused fuzzy deep neural network for data classification
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 139
  start-page: e56
  issue: 10
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b1
  article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b48
  article-title: Patient-specific deep architectural model for ECG classification
  publication-title: J. Healthc. Eng.
– start-page: 2
  issue: 106
  year: 1961
  ident: 10.1016/j.knosys.2021.107187_b9
  article-title: Automatic screening of normal and abnormal electrocardiograms by means of a digital electronic computer
  publication-title: Proc. Soc. Exp. Biol. Med.
– volume: 6
  start-page: 27465
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b65
  article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833841
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b55
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 24
  start-page: 1321
  issue: 5
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b69
  article-title: Inter-patient ECG classification with symbolic representations and multi-perspective convolutional neural networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2942938
– volume: 102
  start-page: 327
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b89
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.001
– ident: 10.1016/j.knosys.2021.107187_b94
– year: 2019
  ident: 10.1016/j.knosys.2021.107187_b100
– year: 1969
  ident: 10.1016/j.knosys.2021.107187_b23
– volume: 99
  start-page: 53
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b59
  article-title: A novel application of deep learning for single-lead ECG classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.013
– volume: 17
  start-page: 200
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2021.107187_b5
  article-title: Integrated heart failure telemonitoring system for homecare
  publication-title: Cardiol. J.
– volume: 415–416
  start-page: 190
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b71
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2021.107187_b98
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: 10.1016/j.knosys.2021.107187_b16
  article-title: Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103801
– volume: 345
  start-page: 340
  year: 2016
  ident: 10.1016/j.knosys.2021.107187_b47
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.082
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b110
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.knosys.2021.107187_b45
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– ident: 10.1016/j.knosys.2021.107187_b51
– volume: 8
  start-page: 19
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b90
  article-title: A stacked LSTM for atrial fibrillation prediction based on multivariate ECGs
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-020-00103-x
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b29
– ident: 10.1016/j.knosys.2021.107187_b107
  doi: 10.1109/CVPR.2017.17
– volume: 501
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b87
  article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning
  publication-title: Inform. Sci.
– year: 1998
  ident: 10.1016/j.knosys.2021.107187_b38
– volume: 115
  start-page: 465
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b84
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.011
– ident: 10.1016/j.knosys.2021.107187_b116
  doi: 10.1109/ICNN.1988.23887
– start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b53
  article-title: LSTM based auto-encoder model for ECG arrhythmias classification
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.knosys.2021.107187_b111
– volume: 11
  start-page: 36
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b18
  article-title: A review of signal processing techniques for electrocardiogram signal quality assessment
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2810957
– year: 2016
  ident: 10.1016/j.knosys.2021.107187_b11
– year: 2014
  ident: 10.1016/j.knosys.2021.107187_b46
  article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation
  publication-title: Comput. Sci.
– volume: 96
  start-page: 189
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b91
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 8
  start-page: 139
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b93
  article-title: Automatic detection of atrial fibrillation based on CNN-LSTM and shortcut connection
  publication-title: Healthcare
  doi: 10.3390/healthcare8020139
– volume: 81
  start-page: 612
  issue: 9
  year: 2012
  ident: 10.1016/j.knosys.2021.107187_b6
  article-title: Telecardiology through ubiquitous internet services
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2012.05.011
– year: 2017
  ident: 10.1016/j.knosys.2021.107187_b96
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.knosys.2021.107187_b13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 313
  start-page: 504
  issue: July
  year: 2006
  ident: 10.1016/j.knosys.2021.107187_b25
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b79
  article-title: Non-standardized patch-based ECG lead together with deep learning based algorithm for automatic screening of atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 39
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b85
  article-title: Inter-patient ECG classification with convolutional and recurrent neural networks
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.06.001
– volume: 9
  start-page: 1733
  issue: 10
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b49
  article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0677-5
– volume: 94
  start-page: 19
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b81
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.023
– start-page: 859
  issue: 89
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b20
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 123
  year: 2020
  ident: 10.1016/j.knosys.2021.107187_b80
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103866
– volume: 102
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b78
  article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network
  publication-title: Future Gener. Comput. Syst.
– ident: 10.1016/j.knosys.2021.107187_b92
– volume: 67
  start-page: 1124
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b60
  article-title: False alarm reduction in atrial fibrillation detection using deep belief networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2769198
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b66
  article-title: ECG arrhythmia classification using stft-based spectrogram and convolutional neural network
  publication-title: IEEE Access
– year: 2012
  ident: 10.1016/j.knosys.2021.107187_b34
– volume: 59
  start-page: 241
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2021.107187_b7
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2171037
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b102
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2021.107187_b62
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b74
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.04.012
– start-page: S352133162
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b17
  article-title: Deep learning for healthcare applications based on physiological signals: A review
  publication-title: Comput. Methods Programs Biomed.
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b101
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b31
– year: 1957
  ident: 10.1016/j.knosys.2021.107187_b22
– start-page: S167739X
  year: 2017
  ident: 10.1016/j.knosys.2021.107187_b70
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
– year: 2014
  ident: 10.1016/j.knosys.2021.107187_b41
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b109
– volume: 7
  start-page: 50431
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b117
  article-title: A probabilistic process neural network and its application in ECG classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2910880
– volume: 64
  start-page: 29
  year: 2015
  ident: 10.1016/j.knosys.2021.107187_b35
  article-title: Expected energy-based restricted Boltzmann machine for classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.006
– volume: 3
  start-page: 2672
  year: 2014
  ident: 10.1016/j.knosys.2021.107187_b112
  article-title: Generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 122
  start-page: 23
  year: 2019
  ident: 10.1016/j.knosys.2021.107187_b77
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– volume: 314
  start-page: 336
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b63
  article-title: Patient-specific ECG classification by deeper CNN from generic to dedicated
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.068
– volume: 6
  start-page: 222
  year: 2016
  ident: 10.1016/j.knosys.2021.107187_b56
  article-title: A multistage deep belief networks application on arrhythmia classification
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.2016SpecialIssue-146978
– year: 2016
  ident: 10.1016/j.knosys.2021.107187_b42
– volume: 45
  start-page: 22
  year: 2018
  ident: 10.1016/j.knosys.2021.107187_b68
  article-title: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.05.013
– year: 2018
  ident: 10.1016/j.knosys.2021.107187_b52
  article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
SSID ssj0002218
Score 2.6885011
Snippet Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107187
SubjectTerms Algorithms
Artificial neural networks
Belief networks
Blood vessels
Cardiovascular diseases
Classification
Coders
Convolutional neural network
Deep belief network
Deep learning
Diagnosis
Electrocardiogram
Electrocardiography
Errors
Experts
Extraction
Feature extraction
Heart diseases
Learning
Machine learning
Medical diagnosis
Networks
Neural networks
Recurrent
Recurrent neural network
Recurrent neural networks
Rhythm
Stacked auto-encoders
Ultrasonic imaging
Title Deep learning in ECG diagnosis: A review
URI https://dx.doi.org/10.1016/j.knosys.2021.107187
https://www.proquest.com/docview/2566526753
Volume 227
WOSCitedRecordID wos000679379400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLe6jsMuvLZpHQX5wIGLp9R2Ht4BqSqFAlUFUoGKS-QmzpRSZVXXlvLf8zm2E7ZpjB64RJHjWI5_9vfK90DoJfB8KWSSwUGSnOgU50SmLCC0o8I0kClnZfm2r8NwNIomE_Gp0XjtYmE287Aoou1WLP4r1NAGYOvQ2R3grgaFBrgH0OEKsMP1n4B_o9TCFYMow1X6vXfaxKo96vIrE4m-rP8IWMH0o7OtEc3XUpvhuRK4h_lagzHJi5917Ng3a2serP9w7Cm9A75fFhezvGr8bBIVDKVlk9bKQDulG5V_zVzokdCzyWEt5aQmrN_SPlAkO4Z53iLLxkIwO_sBX_pLJ0mnnbO6-_Us2De4U-Uz6NzRZrEZJdajxGaUPbRPQ19ETbTffd-ffKh4MaWlhbeavQueLD38bs_mLuHkBpsuZY_xY_TQKg24a8B-ghqqeIoeuYIc2NLnQ_RKY48d9jgvMGCPK-zPcRcb5I_Ql7f9cW9AbCkMkjDGV2QqpEgzoJaBClmkoiRVoLcmwguyLORZ5AuhQJZTCvRhL5pqpTESgUymXCQclEZ2jJrFZaFOEOZlbDTnilPJgymsGiitPpfw_amnGGsh5tYgTmyeeF2uZB7_DYEWItVbC5Mn5Z7-oVve2Mp6RoaLYc_c82bboRHbYwfPQSvxKSi_7HTHiTxDB_V-b6PmarlWz9GDZLPKr5Yv7H76Dby3esE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+ECG+diagnosis%3A+A+review&rft.jtitle=Knowledge-based+systems&rft.au=Liu%2C+Xinwen&rft.au=Wang%2C+Huan&rft.au=Li%2C+Zongjin&rft.au=Qin%2C+Lang&rft.date=2021-09-05&rft.issn=0950-7051&rft.volume=227&rft.spage=107187&rft_id=info:doi/10.1016%2Fj.knosys.2021.107187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2021_107187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon