Fields2Cover: An open-source coverage path planning library for unmanned agricultural vehicles
This paper describes Fields2Cover<xref ref-type="fn" rid="fn1"> 1 1 https://github.com/Fields2Cover/Fields2Cover , a novel open source library for coverage path planning (CPP) for agricultural vehicles. While there are several CPP solutions nowadays, there have been limited...
Gespeichert in:
| Veröffentlicht in: | IEEE robotics and automation letters Jg. 8; H. 4; S. 1 - 8 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper describes Fields2Cover<xref ref-type="fn" rid="fn1"> 1 1
https://github.com/Fields2Cover/Fields2Cover
, a novel open source library for coverage path planning (CPP) for agricultural vehicles. While there are several CPP solutions nowadays, there have been limited efforts to unify them into an open source library and provide benchmarking tools to compare their performance. Fields2Cover provides a framework for planning coverage paths, developing novel techniques, and benchmarking state-of-the-art algorithms. The library features a modular and extensible architecture that supports various vehicles and can be used for a variety of applications, including farms. Its core modules are: a headland generator, a swath generator, a route planner and a path planner. An interface to the Robot Operating System (ROS) is also supplied as an add-on. In this paper, the functionalities of the library for planning a coverage path in agriculture are demonstrated using 8 state-of-the-art methods and 7 objective functions in simulation and field experiments. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2377-3766 2377-3766 |
| DOI: | 10.1109/LRA.2023.3248439 |