A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem

The blocking flow-shop scheduling problem (BFSP) has been aroused general attention due to its broad industrial applications. However, most researches about it mainly focus on optimization of single objective. Multiple objectives are less considered simultaneously. Actually, in the practical product...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 165; s. 110 - 131
Hlavní autoři: Shao, Zhongshi, Pi, Dechang, Shao, Weishi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.02.2019
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The blocking flow-shop scheduling problem (BFSP) has been aroused general attention due to its broad industrial applications. However, most researches about it mainly focus on optimization of single objective. Multiple objectives are less considered simultaneously. Actually, in the practical production, the consideration of multiple objectives simultaneously could give more realistic solutions to the decision maker. Therefore, in this paper, we propose a novel multi-objective discrete water wave optimization (MODWWO) algorithm to solve a multi-objective BFSP (MOBFSP) that minimizes both makespan and total flow time. In the proposed algorithm, a decomposition-based initialization strategy is developed to generate a population with high quality and diversity. Then, a ranking-based propagation operator is designed to guide the global exploration and local exploitation of algorithm. Afterwards, a local intensification-based breaking operator is applied to improve the quality of the new created waves. Furthermore, a problem-specific refraction operator is incorporated to avoid being trapped in local optimum. The proposed algorithm is evaluated based on the benchmark instances, and compared with several state-of-the-art multi-objective scheduling optimization approaches. The comparison results show that the proposed MODWWO is a high-performing method for the considered MOBFSP. •Propose a multi-objective discrete WWO for MOBFSP.•Minimize the makespan and the total flowtime simultaneously.•Each operator of WWO is newly customized according to the features of problem.•Effectiveness of the proposed algorithm is demonstrated by numerical experiments and comparisons.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2018.11.021