The automatic design of parameter adaptation techniques for differential evolution with genetic programming

This study proposes a technique aimed at the automatic search for parameter adaptation strategies in a differential evolution algorithm with genetic programming symbolic regression. Genetic programming is applied to find the symbolic expression for scaling factor control during the optimization proc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 239; s. 108070
Hlavní autoři: Stanovov, Vladimir, Akhmedova, Shakhnaz, Semenkin, Eugene
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 05.03.2022
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study proposes a technique aimed at the automatic search for parameter adaptation strategies in a differential evolution algorithm with genetic programming symbolic regression. Genetic programming is applied to find the symbolic expression for scaling factor control during the optimization process of differential evolution based on the current computational resource, ratio of successful solutions and adapted scaling factor value. The design of the parameter adaptation technique is performed by a computational experiment, which consisted in solving several complex optimization problems. Better symbolic expressions are selected with regards to the Friedman ranking procedure, and the best solutions are additionally evaluated to compare them to the existing parameter adaptation techniques. The experimental results show that the automatically designed parameter adaptation techniques described by symbolic expressions are capable of outperforming existing parameter adaptation methods, while using different information sources. The analysis of automatically generated solutions shows that the proposed technique can be considered an automatic knowledge extraction method. This is due to the results showing that well-performing parameter adaptation can behave differently from state-of-the-art methods, thereby revealing previously unknown algorithm properties.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2021.108070