Riemann surface of the Riemann zeta function
In this paper we treat the classical Riemann zeta function as a function of three variables: one is the usual complex 1-dimensional, customly denoted as s, another two are complex infinite dimensional, we denote them as b={bn}n=1∞ and z={zn}n=1∞. When b={1}n=1∞ and z={1n}n=1∞ one gets the usual Riem...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 529; číslo 2; s. 126756 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.01.2024
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we treat the classical Riemann zeta function as a function of three variables: one is the usual complex 1-dimensional, customly denoted as s, another two are complex infinite dimensional, we denote them as b={bn}n=1∞ and z={zn}n=1∞. When b={1}n=1∞ and z={1n}n=1∞ one gets the usual Riemann zeta function. Our goal in this paper is to study the meromorphic continuation of ζ(b,z,s) as a function of the triple (b,z,s). |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2022.126756 |