Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-á-vis the differential prognosis and differentiation of Multiple Sclerosis’ subgroups
Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enab...
Saved in:
| Published in: | Knowledge-based systems Vol. 246; p. 108694 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
21.06.2022
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enabling the mathematical formulation of neural dynamics across spatial and temporal scales. The human brain with its fractal structure demonstrates complex dynamics and fractals in the brain are characterized by irregularity, singularity and self-similarity in terms of form at different observation levels, making detection difficult as observations in real-time occurrences can be time variant, discrete, continuous or noisy. Multiple Sclerosis (MS) is an autoimmune degenerative disease with time and space related dissemination, leading to neuronal apoptosis, coupled with some subtle features that could be overlooked by physicians. This study, through the proposed integrated approach with multi-source complex spatial data, aims to attain accurate prediction, diagnosis and prognosis of MS subgroups by HMM with Viterbi algorithm and Forward–Backward algorithm as the dynamic and efficient products of knowledge-based and Artificial Intelligence (AI)-based systems within the framework of precision medicine. Multifractal Bayesian method (MFM) accordingly applied to identify and eliminate “insignificant” irregularities while maintaining “significant” singularities. An efficient modelling of HMM is proposed to diagnose and predict the course of MS while using MFM method. Unlike the methods employed in previous studies, our proposed integrated novel method encompasses the subsequent approaches based on reliable MS dataset (X) collected: (i) MFM method was applied (X) to MS dataset to characterize the irregular, self-similar and significant attributes, thus, attributes with “insignificant” irregularities were eliminated and “significant” singularities were maintained. MFM-MS dataset (Xˆ) was generated. (ii) The continuous values in the MS dataset (X) and MFM-MS dataset (Xˆ) were converted into discrete values through vector quantization method of the HMM (iii) Through transitional matrices, different observation matrices were computed from the both datasets. (v) Computational complexity has been computed for both datasets. (vi) The results of the HMM models based on observation matrices obtained from both datasets were compared. In terms of the integrated HMM model proposed and the MS dataset handled, no earlier work exists in the literature. The experimental results demonstrate the applicability and accuracy of our novel proposed integrated method, HMM and Multifractal (HMM-MFM) method, for the application to the MS dataset (X). Compared with conventional methods, our novel method has achieved more superiority regarding extracting subtle and hidden details, which are significant for distinguishing different dynamic and complex systems including engineering and other related applied sciences. Thus, we have aimed at pointing a new frontier by providing a novel alternative mathematical model to facilitate the critical decision-making, management and prediction processes among the related areas in chaotic, dynamic complex systems with intricate and transient states.
•Novel HMM-MFM model reveals critical significance of predictive quantization in dynamic complexity.•Predictive quantization by HMM-MFM model for dynamic and transient states in varying complex systems.•Viterbi algorithm’s recursion enables maximization and uncovering of the most probable hidden state sequence.•Computational complexity and reliability of Forward–Backward procedure, guaranteeing local maxima and maximizing the objective function φ(N2T).•Multifarious knowledge-based approach with a facilitating function in precision medicine ensuring personalized treatment tailoring. |
|---|---|
| AbstractList | Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enabling the mathematical formulation of neural dynamics across spatial and temporal scales. The human brain with its fractal structure demonstrates complex dynamics and fractals in the brain are characterized by irregularity, singularity and self-similarity in terms of form at different observation levels, making detection difficult as observations in real-time occurrences can be time variant, discrete, continuous or noisy. Multiple Sclerosis (MS) is an autoimmune degenerative disease with time and space related dissemination, leading to neuronal apoptosis, coupled with some subtle features that could be overlooked by physicians. This study, through the proposed integrated approach with multi-source complex spatial data, aims to attain accurate prediction, diagnosis and prognosis of MS subgroups by HMM with Viterbi algorithm and Forward–Backward algorithm as the dynamic and efficient products of knowledge-based and Artificial Intelligence (AI)-based systems within the framework of precision medicine. Multifractal Bayesian method (MFM) accordingly applied to identify and eliminate “insignificant” irregularities while maintaining “significant” singularities. An efficient modelling of HMM is proposed to diagnose and predict the course of MS while using MFM method. Unlike the methods employed in previous studies, our proposed integrated novel method encompasses the subsequent approaches based on reliable MS dataset (X) collected: (i) MFM method was applied (X) to MS dataset to characterize the irregular, self-similar and significant attributes, thus, attributes with “insignificant” irregularities were eliminated and “significant” singularities were maintained. MFM-MS dataset (Xˆ) was generated. (ii) The continuous values in the MS dataset (X) and MFM-MS dataset (Xˆ) were converted into discrete values through vector quantization method of the HMM (iii) Through transitional matrices, different observation matrices were computed from the both datasets. (v) Computational complexity has been computed for both datasets. (vi) The results of the HMM models based on observation matrices obtained from both datasets were compared. In terms of the integrated HMM model proposed and the MS dataset handled, no earlier work exists in the literature. The experimental results demonstrate the applicability and accuracy of our novel proposed integrated method, HMM and Multifractal (HMM-MFM) method, for the application to the MS dataset (X). Compared with conventional methods, our novel method has achieved more superiority regarding extracting subtle and hidden details, which are significant for distinguishing different dynamic and complex systems including engineering and other related applied sciences. Thus, we have aimed at pointing a new frontier by providing a novel alternative mathematical model to facilitate the critical decision-making, management and prediction processes among the related areas in chaotic, dynamic complex systems with intricate and transient states.
•Novel HMM-MFM model reveals critical significance of predictive quantization in dynamic complexity.•Predictive quantization by HMM-MFM model for dynamic and transient states in varying complex systems.•Viterbi algorithm’s recursion enables maximization and uncovering of the most probable hidden state sequence.•Computational complexity and reliability of Forward–Backward procedure, guaranteeing local maxima and maximizing the objective function φ(N2T).•Multifarious knowledge-based approach with a facilitating function in precision medicine ensuring personalized treatment tailoring. Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enabling the mathematical formulation of neural dynamics across spatial and temporal scales. The human brain with its fractal structure demonstrates complex dynamics and fractals in the brain are characterized by irregularity, singularity and self-similarity in terms of form at different observation levels, making detection difficult as observations in real-time occurrences can be time variant, discrete, continuous or noisy. Multiple Sclerosis (MS) is an autoimmune degenerative disease with time and space related dissemination, leading to neuronal apoptosis, coupled with some subtle features that could be overlooked by physicians. This study, through the proposed integrated approach with multi-source complex spatial data, aims to attain accurate prediction, diagnosis and prognosis of MS subgroups by HMM with Viterbi algorithm and Forward–Backward algorithm as the dynamic and efficient products of knowledge-based and Artificial Intelligence (AI)-based systems within the framework of precision medicine. Multifractal Bayesian method (MFM) accordingly applied to identify and eliminate "insignificant" irregularities while maintaining "significant" singularities. An efficient modelling of HMM is proposed to diagnose and predict the course of MS while using MFM method. Unlike the methods employed in previous studies, our proposed integrated novel method encompasses the subsequent approaches based on reliable MS dataset (X) collected: (i) MFM method was applied (X) to MS dataset to characterize the irregular, self-similar and significant attributes, thus, attributes with "insignificant" irregularities were eliminated and "significant" singularities were maintained. MFM-MS dataset (X) was generated. (ii) The continuous values in the MS dataset (X) and MFM-MS dataset (X) were converted into discrete values through vector quantization method of the HMM (iii) Through transitional matrices, different observation matrices were computed from the both datasets. (v) Computational complexity has been computed for both datasets. (vi) The results of the HMM models based on observation matrices obtained from both datasets were compared. In terms of the integrated HMM model proposed and the MS dataset handled, no earlier work exists in the literature. The experimental results demonstrate the applicability and accuracy of our novel proposed integrated method, HMM and Multifractal (HMM-MFM) method, for the application to the MS dataset (X). Compared with conventional methods, our novel method has achieved more superiority regarding extracting subtle and hidden details, which are significant for distinguishing different dynamic and complex systems including engineering and other related applied sciences. Thus, we have aimed at pointing a new frontier by providing a novel alternative mathematical model to facilitate the critical decision-making, management and prediction processes among the related areas in chaotic, dynamic complex systems with intricate and transient states. |
| ArticleNumber | 108694 |
| Author | Baleanu, Dumitru Karabudak, Rana Karaca, Yeliz |
| Author_xml | – sequence: 1 givenname: Yeliz orcidid: 0000-0001-8725-6719 surname: Karaca fullname: Karaca, Yeliz email: yeliz.karaca@ieee.org organization: University of Massachusetts Medical School (UMASS), Worcester, MA 01655, USA – sequence: 2 givenname: Dumitru surname: Baleanu fullname: Baleanu, Dumitru email: dumitru@cankaya.edu.tr organization: Çankaya University, Department of Mathematics, 1406530 Ankara, Turkey – sequence: 3 givenname: Rana surname: Karabudak fullname: Karabudak, Rana email: rkbudak@hacettepe.edu.tr organization: Hacettepe University, Department of Neurology, Ankara, Turkey |
| BookMark | eNqFkc1u1DAUhS1UJKYtb8DCEusMtpPJDwskVAFF6qiLwtq6sa9bT5M4tZ1RhxWvwZK3YM-b8CQ4TReIBayuZJ_z3aN7jsnR4AYk5AVna854-Wq3vh1cOIS1YEKkp7psiidkxetKZFXBmiOyYs2GZRXb8GfkOIQdY0nJ6xX5cW61xoFuwd-6Pd06jR2FQdN-6qI1HlSEjvYYb5zOWgio6ehRWxXtHundBEO0XyBaN1Dl-rHDexsPtJ8xge5tyH5-z9Kg8Qaptsagx-RIyNG76xQ6fc3b_vh6YDlDt3OABKRXqkM_K399_UbD1F57N43hlDw10AV8_jhPyOf37z6dnWcXlx8-nr29yFSeFzGrUQM00OamMKixbTVHARvBgAFUplWMlYWGHFuBosgByhwFIleN5qYBlp-Qlws3Bb6bMES5c5Mf0kopykpUZc03IqmKRaVS0uDRyNHbHvxBcibnjuROLh3JuSO5dJRsr_-yKRsfLhA92O5_5jeLOZ0a9xa9DMrioFI7HlWU2tl_A34D1E67oQ |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_121213 crossref_primary_10_69882_adba_cem_2024071 crossref_primary_10_51537_chaos_1249532 crossref_primary_10_3390_jmse12071129 crossref_primary_10_1016_j_ecolind_2022_109526 |
| Cites_doi | 10.1134/1.1606753 10.1016/j.physa.2018.07.060 10.1016/j.mri.2008.01.016 10.1016/j.physa.2009.07.024 10.1134/1.1591315 10.1016/j.bspc.2019.101739 10.1007/s11416-014-0232-9 10.1016/j.spa.2003.11.002 10.1016/j.neuroimage.2010.06.050 10.1002/sim.2108 10.1016/j.physa.2016.07.027 10.1016/j.csda.2010.06.020 10.1155/2013/262931 10.4103/1673-5374.195274 10.1186/s12874-018-0629-0 10.1016/j.compbiomed.2019.103571 10.1016/j.ifacol.2017.08.2591 10.1016/j.physa.2017.08.155 10.1016/j.csda.2018.08.004 10.1038/s41598-018-23769-6 10.1155/2018/9034647 10.1016/j.neuroimage.2007.03.057 10.3390/e16084497 10.1016/j.future.2020.03.014 10.1016/j.jns.2008.12.023 10.3389/fnins.2018.00603 10.1016/j.neuroimage.2013.06.072 10.1016/j.cnsns.2009.09.018 10.1017/S0033291700027926 10.1016/j.scitotenv.2019.134246 10.1016/j.jvolgeores.2018.09.008 10.1016/j.biosystems.2019.104033 10.1109/ICASSP.2003.1201647 10.1155/2016/5030593 10.1016/S0002-9149(98)01076-5 10.1109/ISBI.2010.5490413 10.1016/S1474-4422(17)30470-2 10.1016/j.knosys.2020.106341 10.1016/j.petrol.2019.106757 10.1016/j.heliyon.2019.e01299 10.1016/j.ijforecast.2015.02.006 10.1016/j.chaos.2019.01.008 10.1016/j.neulet.2005.04.078 10.1016/j.physa.2019.123234 10.1016/j.chaos.2020.109820 10.4236/jbise.2012.54021 10.1016/j.mvr.2018.02.006 10.1016/B978-0-12-388403-9.00011-4 10.1016/j.mbs.2016.02.009 10.1016/j.artint.2009.11.011 10.1023/A:1009901714819 10.1002/mp.12603 10.1016/j.physa.2019.123821 10.1016/B978-0-08-099387-4.00002-8 10.2174/138920209789177575 10.1212/WNL.0000000000000560 10.1016/j.jedc.2020.103855 10.1016/S1474-4422(15)00393-2 10.1212/WNL.33.11.1444 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier Science Ltd. Jun 21, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jun 21, 2022 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2022.108694 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Medicine |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2022_108694 S0950705122003197 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-8edaa9ab3f4fedebbd1e2a520a0aa7fbc0064da3eb2e243aa63e2ee1c9d1f9a03 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795156400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:43:36 EST 2025 Sat Nov 29 07:07:17 EST 2025 Tue Nov 18 22:26:52 EST 2025 Fri Feb 23 02:40:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Forward–Backward algorithm Viterbi algorithm Nonlinear stochastic processes Computational dynamic complexity analyses Hidden Markov Model Multiple Sclerosis’ subgroups Multifractal analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-8edaa9ab3f4fedebbd1e2a520a0aa7fbc0064da3eb2e243aa63e2ee1c9d1f9a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8725-6719 |
| PQID | 2672768152 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2672768152 crossref_primary_10_1016_j_knosys_2022_108694 crossref_citationtrail_10_1016_j_knosys_2022_108694 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108694 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-21 |
| PublicationDateYYYYMMDD | 2022-06-21 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Fan, Yang, Bouguila, Chen (b10) 2020; 206 Ranganathan, Nakai, Schonbach (b3) 2018 Lärinczi, Yang (b42) 2019; 120 Ayache (b86) 2002; 86, 581 Tao (b102) 1992 Li, Wang, Luo, Liu, Cai (b94) 2017 Dutta, Ghosh, Chatterjee (b36) 2016; 463 Kisan, Mishra, Rout (b93) 2017; 45 Kalbhor, Austin, Filiol, Josse, Stamp (b15) 2015; 112 Afzal, Al-Dabbagh (b24) 2017; 501 Karaca, Baleanu (b63) 2020 Joosten, Soler-Toscano, Zenil (b110) 2016 Kobelev, Kobelev, Klimontovich (b77) 2003; 48 Reishofer, Studencnik, Koschutnig, Deutschmann, Ahammer, Wood (b34) 2018; 81 (b73) 2017 Zeng, Anitescu (b25) 2014; 233 Barnsley, Saupe, Vrscay (b84) 2002; vol. 132 Xie, Cai, Li, Wu, Zhao, Luo, Liu (b12) 2019; 185 Wang, Wu, Yang (b37) 2016; 321 Cavallari, Kimbrough, Stamile, Umeton, Chitnis, Guttmann (b57) 2018 Jaffard, Seuret, Wendt, Leonarduzzi, Abry (b43) 2019; 4752229 Bechhoefer (b23) 2015; 177 Esteban, Sepulcre, de Miras, Navas, de Mendizábal, Goñi, Villoslada (b58) 2009; 2821 Waxman (b64) 2005 Vehel (b75) 2000 Zhang, Tong, Wang, Li (b60) 2008; 268 Emdadi, Moughari, Meybodi, Eslahchi (b20) 2019; 5 Siddiqi, Gordon, Moore (b103) 2007 Meyer (b85) 1997; vol. 9 Kukacka, Kristoufek (b46) 2020; 113 Iftekharuddin, Zheng, Islam, Ogg (b50) 2009; 2071 Cohen (b79) 1999 Karaca, Cattani, Karabudak (b55) 2018 Bricq, Collet, Armspach (b29) 2008 Karaca, Moonis, Zhang, Gezgez (b111) 2019; 45 Seely, Newman, Herry (b49) 2014; 168 Karaca, Cattani (b53) 2017; 2504 Véhel (b90) 1996 Liu (b9) 2018; 503 West (b69) 2012 Lassmann (b66) 2018; 83 Ayache, Véhel (b87) 1999 (b74) 2019 Kobelev, Kobelev, Romanov (b76) 2003; 48 Jaffard (b81) 1989; 3081 Trujillo-Castrillón, Valdés-González, Arámbula-Mendoza, Santacoloma-Salguero (b7) 2018; 364 Hou, Zhu, Chen, Wang, Liu (b44) 2020; 187 Bunke, Caelli (b101) 2001 Jiao, Wang, Li, Feng, Hou (b40) 2020; 540 Esteban, Sepulcre, de Mendizábal, Goňi, Navas, de Miras, Villoslada (b59) 2007; 363 Nicolis, Ramirez-Cobo, Vidakovic (b91) 2011; 55 Cui, Chen (b96) 2010 Baravalle, Thomsen, Delrieux, Lu, Gómez, Stośić, Stośić (b33) 2017; 4412 J.L. Véhel, P. Legrand, Bayesian multifractal signal denoising, in: Proceedings of the IEEE International Conference on Accoustics, Speech, and Signal Processing, 2003, pp. 177–180. Kurtzke (b71) 1983; 33 Jurafsky, Martin (b98) 2018 Popov, Ellis-Robinson, Humphris (b14) 2019; 19 Dutta, Ghosh, Chatterjee (b48) 2018; 491 Karaca, Cattani, Moonis, Bayrak (b31) 2018 Bullmore, Brammer, Harvey, Persaud, Murray, Ron (b107) 1994; 24 Chivers, Sleightholme (b105) 2015 Franzese, Iuliano (b95) 2019 Xia, Tang (b5) 2019; 132 Kaplan, Biggin (b6) 2012 Hawkins (b16) 2016; 275 Lavicka, Kracik (b45) 2020; 545 Mäkikallio, Hober, Kober, Torp-Pedersen, Peng, Goldberger, Huikuri (b38) 1999; 836 Tseng, Kawashima, Kobayashi, Takeuchi, Nakamura (b21) 2020; 698 Karaca, Cattani (b88) 2018 Braverman, Tambasco (b41) 2013 Gerasimova (b39) 2014 Mamon, Duan (b8) 2010; 159 Arora, Barak (b104) 2009 Seifi, Rahatabad, Einalou (b56) 2019; 54 Karaca, Zhang, Cattani, Ayan (b68) 2017 Karaca (b100) 2012 Karaca, Moonis, Zhang (b54) 2019 Sun, Chen, Chen (b78) 2009; 38821 King, Brown, Hwang, Jeon, George (b47) 2010; 532 Ha, Yoon, Lee, Shin, Lee, Kim, Ha, Kim, Kwon (b108) 2005; 384 Hiroyasu, Kiko, Izumi (b109) 2000; 77 Filippi, Rocca, Ciccarelli, De Stefano, Evangelou, Kappos, Gasperini (b67) 2016; 153 Quinn, Vidaurre, Abeysuriya, Becker, Nobre, Woolrich (b18) 2018; 12 Lutton, Grenier, Vehel (b92) 2005 Mohamadkhanloo, Mehrabi, Sohrabi (b61) 2012; 504 Awad, Khanna (b1) 2015 Lublin, Reingold, Cohen, Cutter, Sorensen, Thompson, Bebo (b65) 2014; 833 Yang (b30) 2017 Hallinan (b4) 2012 Brand, Oliver, Pentland (b2) 1997 Karaca, Moonis, Baleanu (b32) 2020; 136 Alpaydin (b99) 2010 Yotter, Thompson, Nenadic, Gaser (b106) 2010 Chadza, Kyriakopoulos, Lambotharan (b97) 2020 Lai, Twine, O’brien, Guo, Bauer (b13) 2018 Dash, Kolekar, Jha (b17) 2020; 116 F. Forbes, S. Doyle, D. Garcia-Lorenzo, C. Barillot, M. Dojat, A weighted multi-sequence markov model for brain lesion segmentation, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, March, pp. 225–232. Şen (b72) 2018; 55 Suppl 1 Goodwin (b62) 2016; 1112 Yoon (b19) 2009; 106 Popovic, Radunovic, Badnjar, Popovic (b35) 2018; 118 Pantoni, Marzi, Poggesi, Giorgio, De Stefano, Mascalchi, Pantoni, Marzi, Poggesi, Giorgio, De Stefano, Mascalchi, Diciotti (b51) 2019; 24 Bricq, Collet, Armspach (b26) 2008 Michael (b80) 1988 Samaee, Kobravi (b22) 2020; 57 Ayache, Vehel (b83) 2000; 31 Altman, Petkau (b28) 2005; 2415 Goňi, Sporns, Cheng, Aznárez-Sanado, Wang, Josa, Avena-Koenigsberger (b52) 2013; 83 Thompson, Banwell, Barkhof, Carroll, Coetzee, Comi, Fujihara (b70) 2018; 172 Ayache, Véhel (b82) 2004; 1111 Yu (b11) 2010; 174 Siddiqi (10.1016/j.knosys.2022.108694_b103) 2007 Franzese (10.1016/j.knosys.2022.108694_b95) 2019 Samaee (10.1016/j.knosys.2022.108694_b22) 2020; 57 West (10.1016/j.knosys.2022.108694_b69) 2012 Xie (10.1016/j.knosys.2022.108694_b12) 2019; 185 Yu (10.1016/j.knosys.2022.108694_b11) 2010; 174 Bricq (10.1016/j.knosys.2022.108694_b26) 2008 Mäkikallio (10.1016/j.knosys.2022.108694_b38) 1999; 836 Kukacka (10.1016/j.knosys.2022.108694_b46) 2020; 113 King (10.1016/j.knosys.2022.108694_b47) 2010; 532 Kaplan (10.1016/j.knosys.2022.108694_b6) 2012 10.1016/j.knosys.2022.108694_b89 Tao (10.1016/j.knosys.2022.108694_b102) 1992 Waxman (10.1016/j.knosys.2022.108694_b64) 2005 Barnsley (10.1016/j.knosys.2022.108694_b84) 2002; vol. 132 Ha (10.1016/j.knosys.2022.108694_b108) 2005; 384 Baravalle (10.1016/j.knosys.2022.108694_b33) 2017; 4412 Cavallari (10.1016/j.knosys.2022.108694_b57) 2018 Popov (10.1016/j.knosys.2022.108694_b14) 2019; 19 Lavicka (10.1016/j.knosys.2022.108694_b45) 2020; 545 Ayache (10.1016/j.knosys.2022.108694_b83) 2000; 31 Bricq (10.1016/j.knosys.2022.108694_b29) 2008 Mamon (10.1016/j.knosys.2022.108694_b8) 2010; 159 Wang (10.1016/j.knosys.2022.108694_b37) 2016; 321 Ranganathan (10.1016/j.knosys.2022.108694_b3) 2018 Véhel (10.1016/j.knosys.2022.108694_b90) 1996 Altman (10.1016/j.knosys.2022.108694_b28) 2005; 2415 Kobelev (10.1016/j.knosys.2022.108694_b77) 2003; 48 Awad (10.1016/j.knosys.2022.108694_b1) 2015 Brand (10.1016/j.knosys.2022.108694_b2) 1997 Fan (10.1016/j.knosys.2022.108694_b10) 2020; 206 Zeng (10.1016/j.knosys.2022.108694_b25) 2014; 233 Jurafsky (10.1016/j.knosys.2022.108694_b98) 2018 Esteban (10.1016/j.knosys.2022.108694_b58) 2009; 2821 Popovic (10.1016/j.knosys.2022.108694_b35) 2018; 118 Karaca (10.1016/j.knosys.2022.108694_b63) 2020 Ayache (10.1016/j.knosys.2022.108694_b86) 2002; 86, 581 Yoon (10.1016/j.knosys.2022.108694_b19) 2009; 106 Hawkins (10.1016/j.knosys.2022.108694_b16) 2016; 275 Lai (10.1016/j.knosys.2022.108694_b13) 2018 Chadza (10.1016/j.knosys.2022.108694_b97) 2020 Kobelev (10.1016/j.knosys.2022.108694_b76) 2003; 48 Lutton (10.1016/j.knosys.2022.108694_b92) 2005 Vehel (10.1016/j.knosys.2022.108694_b75) 2000 Cohen (10.1016/j.knosys.2022.108694_b79) 1999 (10.1016/j.knosys.2022.108694_b73) 2017 Hallinan (10.1016/j.knosys.2022.108694_b4) 2012 Karaca (10.1016/j.knosys.2022.108694_b32) 2020; 136 Goodwin (10.1016/j.knosys.2022.108694_b62) 2016; 1112 Yang (10.1016/j.knosys.2022.108694_b30) 2017 Braverman (10.1016/j.knosys.2022.108694_b41) 2013 Thompson (10.1016/j.knosys.2022.108694_b70) 2018; 172 Joosten (10.1016/j.knosys.2022.108694_b110) 2016 Lassmann (10.1016/j.knosys.2022.108694_b66) 2018; 83 Bunke (10.1016/j.knosys.2022.108694_b101) 2001 Xia (10.1016/j.knosys.2022.108694_b5) 2019; 132 Li (10.1016/j.knosys.2022.108694_b94) 2017 Kurtzke (10.1016/j.knosys.2022.108694_b71) 1983; 33 Zhang (10.1016/j.knosys.2022.108694_b60) 2008; 268 Bullmore (10.1016/j.knosys.2022.108694_b107) 1994; 24 Seely (10.1016/j.knosys.2022.108694_b49) 2014; 168 Ayache (10.1016/j.knosys.2022.108694_b87) 1999 Arora (10.1016/j.knosys.2022.108694_b104) 2009 Karaca (10.1016/j.knosys.2022.108694_b88) 2018 Karaca (10.1016/j.knosys.2022.108694_b68) 2017 Karaca (10.1016/j.knosys.2022.108694_b55) 2018 Kalbhor (10.1016/j.knosys.2022.108694_b15) 2015; 112 Jiao (10.1016/j.knosys.2022.108694_b40) 2020; 540 Karaca (10.1016/j.knosys.2022.108694_b100) 2012 Alpaydin (10.1016/j.knosys.2022.108694_b99) 2010 Bechhoefer (10.1016/j.knosys.2022.108694_b23) 2015; 177 Afzal (10.1016/j.knosys.2022.108694_b24) 2017; 501 Pantoni (10.1016/j.knosys.2022.108694_b51) 2019; 24 Ayache (10.1016/j.knosys.2022.108694_b82) 2004; 1111 Nicolis (10.1016/j.knosys.2022.108694_b91) 2011; 55 Lublin (10.1016/j.knosys.2022.108694_b65) 2014; 833 Jaffard (10.1016/j.knosys.2022.108694_b81) 1989; 3081 Karaca (10.1016/j.knosys.2022.108694_b111) 2019; 45 Meyer (10.1016/j.knosys.2022.108694_b85) 1997; vol. 9 Dash (10.1016/j.knosys.2022.108694_b17) 2020; 116 Yotter (10.1016/j.knosys.2022.108694_b106) 2010 Tseng (10.1016/j.knosys.2022.108694_b21) 2020; 698 Hiroyasu (10.1016/j.knosys.2022.108694_b109) 2000; 77 Reishofer (10.1016/j.knosys.2022.108694_b34) 2018; 81 Hou (10.1016/j.knosys.2022.108694_b44) 2020; 187 Şen (10.1016/j.knosys.2022.108694_b72) 2018; 55 Suppl 1 Cui (10.1016/j.knosys.2022.108694_b96) 2010 Sun (10.1016/j.knosys.2022.108694_b78) 2009; 38821 (10.1016/j.knosys.2022.108694_b74) 2019 Seifi (10.1016/j.knosys.2022.108694_b56) 2019; 54 Trujillo-Castrillón (10.1016/j.knosys.2022.108694_b7) 2018; 364 Michael (10.1016/j.knosys.2022.108694_b80) 1988 Mohamadkhanloo (10.1016/j.knosys.2022.108694_b61) 2012; 504 Quinn (10.1016/j.knosys.2022.108694_b18) 2018; 12 Dutta (10.1016/j.knosys.2022.108694_b36) 2016; 463 Chivers (10.1016/j.knosys.2022.108694_b105) 2015 Gerasimova (10.1016/j.knosys.2022.108694_b39) 2014 Dutta (10.1016/j.knosys.2022.108694_b48) 2018; 491 Goňi (10.1016/j.knosys.2022.108694_b52) 2013; 83 Karaca (10.1016/j.knosys.2022.108694_b53) 2017; 2504 Liu (10.1016/j.knosys.2022.108694_b9) 2018; 503 Karaca (10.1016/j.knosys.2022.108694_b54) 2019 10.1016/j.knosys.2022.108694_b27 Kisan (10.1016/j.knosys.2022.108694_b93) 2017; 45 Iftekharuddin (10.1016/j.knosys.2022.108694_b50) 2009; 2071 Esteban (10.1016/j.knosys.2022.108694_b59) 2007; 363 Emdadi (10.1016/j.knosys.2022.108694_b20) 2019; 5 Karaca (10.1016/j.knosys.2022.108694_b31) 2018 Lärinczi (10.1016/j.knosys.2022.108694_b42) 2019; 120 Jaffard (10.1016/j.knosys.2022.108694_b43) 2019; 4752229 Filippi (10.1016/j.knosys.2022.108694_b67) 2016; 153 |
| References_xml | – start-page: 359 year: 2015 end-page: 364 ident: b105 article-title: An introduction to algorithms and the big O notation publication-title: Introduction to Programming with Fortran – volume: 55 Suppl 1 start-page: S80 year: 2018 ident: b72 article-title: Neurostatus and EDSS calculation with cases publication-title: Arch. Neuropsychiatry – volume: 48 start-page: 285 year: 2003 end-page: 289 ident: b77 article-title: Statistical physics of dynamic systems with variable memory publication-title: Dokl. Phys. – year: 2010 ident: b99 article-title: Introduction to Machine Learning – year: 2012 ident: b69 article-title: Complex Worlds: Uncertain, Unequal and Unfair – volume: 836 start-page: 836 year: 1999 end-page: 839 ident: b38 article-title: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction publication-title: Am. J. Cardiol. – start-page: 155 year: 2001 end-page: 182 ident: b101 article-title: Hidden Markov models: applications in computer vision publication-title: International Journal of Pattern Recognition and Artificial Intelligence, Vol. 15 – volume: 321 start-page: 1 year: 2016 end-page: 9 ident: b37 article-title: Forecasting crude oil market volatility: A Markov switching multifractal volatility approach publication-title: Int. J. Forecast. – volume: 833 start-page: 278 year: 2014 end-page: 286 ident: b65 article-title: Defining the clinical course of multiple sclerosis the 2013 revisions publication-title: Neurology – volume: 3081 start-page: 79 year: 1989 end-page: 81 ident: b81 article-title: Exposants de Hölder en des points donnés et coefficients d’ondelettes publication-title: C. R. Acad. Sci. Paris – start-page: 121 year: 2018 end-page: 136 ident: b55 article-title: ANN classification of MS subgroups with diffusion limited aggregation publication-title: International Conference on Computational Science and its Applications – volume: 185 year: 2019 ident: b12 article-title: DNMHMM: An approach to identify the differential nucleosome regions in multiple cell types based on a hidden Markov model publication-title: Biosystems – volume: 2415 start-page: 2335 year: 2005 end-page: 2344 ident: b28 article-title: Application of hidden Markov models to multiple sclerosis lesion count data publication-title: Stat. Med. – year: 2013 ident: b41 article-title: Scale-specific multifractal medical image analysis publication-title: Comput. Math. Methods Med. – volume: 113 year: 2020 ident: b46 article-title: Do complex’financial models really lead to complex dynamics? Agent-based models and multifractality publication-title: J. Econom. Dynam. Control – volume: 503 start-page: 1007 year: 2018 end-page: 1019 ident: b9 article-title: Hidden Markov model analysis of extreme behaviors of foreign exchange rates publication-title: Physica A – volume: 55 start-page: 738 year: 2011 end-page: 751 ident: b91 article-title: 2D waveletbased spectra with applications publication-title: Comput. Statist. Data Anal. – start-page: 257 year: 2019 end-page: 269 ident: b54 article-title: Multifractal analysis with L2 norm denoising technique: Modelling of MS subgroups classification publication-title: International Conference on Computational Science and its Applications – year: 2009 ident: b104 article-title: Computational Complexity: A Modern Approach – start-page: 274 year: 2005 end-page: 283 ident: b92 article-title: An interactive EA for multifractal bayesian denoising publication-title: EvoWorkshops 2005: Applications of Evolutionary Computing – year: 2018 ident: b98 article-title: Chapter 9: Hidden Markov models publication-title: Speech and Language Processing – year: 2018 ident: b88 article-title: Computational Methods for Data Analysis – volume: 81 start-page: 5431 year: 2018 ident: b34 article-title: Age is reflected in the fractal dimensionality of MRI diffusion based tractography publication-title: Sci. Rep. – volume: 77 start-page: 3 year: 2000 end-page: 793 ident: b109 article-title: Computational complexity of fractal sets publication-title: Real Anal. Exchange – start-page: 81 year: 2015 end-page: 104 ident: b1 article-title: Efficient learning machines: theories, concepts, and applications for engineers and system designers publication-title: Apress – volume: 532 start-page: 471 year: 2010 end-page: 479 ident: b47 article-title: Alzheimer’s disease neuroimaging initiative. Fractal dimension analysis of the cortical ribbon in mild alzheimer’s disease publication-title: Neuroimage – volume: 698 year: 2020 ident: b21 article-title: Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors publication-title: Sci. Total Environ. – volume: 364 start-page: 107 year: 2018 end-page: 120 ident: b7 article-title: Initial processing of volcanic seismic signals using hidden Markov models: Nevado del Huila, Colombia publication-title: J. Volcanol. Geotherm. Res. – start-page: 370 year: 2018 end-page: 371 ident: b57 article-title: Fractal analysis of retinal vascular morphology in multiple sclerosis publication-title: Multiple Sclerosis Journal, Vol. 24 – volume: 187 year: 2020 ident: b44 article-title: Investigation on pore structure and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements publication-title: J. Pet. Sci. Eng. – volume: vol. 9 year: 1997 ident: b85 publication-title: Wavelets, Vibrations and Scalings – start-page: 263 year: 2012 end-page: 283 ident: b6 article-title: Quantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding publication-title: Methods in Cell Biology, Vol. 110 – start-page: 1381 year: 1992 end-page: 1387 ident: b102 article-title: A generalization of discrete hidden Markov model and of viterbi algorithm publication-title: Computer and Information Science, Vol. 25 – year: 2017 ident: b73 article-title: Clinical Review Report: Ocrelizumab Ocrevus: Hoffmann-la Roche Limited: Indication: Treatment of Adult Patients with Relapsing-Remitting Multiple Sclerosis RRMS with Active Disease Defined By Clinical and Imaging Features [Internet] – start-page: 27 year: 2012 end-page: 79 ident: b4 article-title: Data mining for microbiologists publication-title: Methods in Microbiology, Vol. 39 – volume: 504 start-page: 162 year: 2012 ident: b61 article-title: Automatic determination of MS lesion subtypes based on fractal analysis in brain MR images publication-title: J. Biomed. Sci. Eng. – start-page: 994 year: 1997 end-page: 999 ident: b2 article-title: Coupled hidden Markov models for complex action recognition publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 159 start-page: 2521 year: 2010 end-page: 2528 ident: b8 article-title: A self-tuning model for inflation rate dynamics publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 31 start-page: 7 year: 2000 end-page: 18 ident: b83 article-title: The generalized multifractional Brownian motion publication-title: Stat. Inference Stoch. Process. – start-page: 1 year: 1996 end-page: 3 ident: b90 article-title: Numerical computation of the large deviation multifractal spectrum publication-title: CFIC’96-Chaos and Fractals in Chemical Engineering – year: 2018 ident: b3 article-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics – start-page: 492 year: 2007 end-page: 499 ident: b103 article-title: Fast state discovery for HMM model selection and learning publication-title: Artificial Intelligence and Statistics – start-page: 1 year: 2008 end-page: 9 ident: b26 article-title: MS lesion segmentation based on hidden Markov chains publication-title: Grand Challenge Work.: Mult. Scler. Lesion Segm. Challenge – start-page: 35 year: 2017 end-page: 74 ident: b30 article-title: Chapter 3 - development of early warning models publication-title: Early Warning for Infectious Disease Outbreak: Theory and Practice – volume: 174 start-page: 215 year: 2010 end-page: 243 ident: b11 article-title: Hidden semi-Markov models publication-title: Artificial Intelligence – volume: 4752229 year: 2019 ident: b43 article-title: Multifractal formalisms for multivariate analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 363 start-page: 543 year: 2007 end-page: 549 ident: b59 article-title: Fractal dimension and white matter changes in multiple sclerosis publication-title: Neuroimage – volume: 206 year: 2020 ident: b10 article-title: Sequentially spherical data modeling with hidden Markov models and its application to fMRI data analysis publication-title: Knowl.-Based Syst. – volume: 116 year: 2020 ident: b17 article-title: Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and hidden Markov model publication-title: Comput. Biol. Med. – volume: 2071 start-page: 23 year: 2009 end-page: 41 ident: b50 article-title: Fractal-based brain tumor detection in multimodal MRI publication-title: Appl. Math. Comput. – volume: 118 start-page: 36 year: 2018 end-page: 43 ident: b35 article-title: Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes publication-title: Microvasc. Res. – start-page: 169 year: 2010 end-page: 176 ident: b106 article-title: Estimating local surface complexity maps using spherical harmonic reconstructions publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 275 start-page: 18 year: 2016 end-page: 24 ident: b16 article-title: Markov process models of the dynamics of HIV reservoirs publication-title: Math. Biosci. – volume: 2821 start-page: 67 year: 2009 end-page: 71 ident: b58 article-title: Fractal dimension analysis of grey matter in multiple sclerosis publication-title: J. Neurol. Sci. – start-page: 753 year: 2019 end-page: 762 ident: b95 article-title: Hidden markov models publication-title: Encyclopedia of Bioinformatics and Computational Biology – year: 2016 ident: b110 article-title: Fractal dimension versus process complexity publication-title: Adv. Math. Phys. – volume: 86, 581 start-page: 27 year: 2002 end-page: 30 ident: b86 article-title: The generalized multifractional field: a nice tool for the study of the generalized multifractional Brownian motion publication-title: J. Fourier Anal. Appl. – volume: 24 start-page: 771 year: 1994 end-page: 781 ident: b107 article-title: Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients publication-title: Psychol. Med. – volume: 12 start-page: 603 year: 2018 ident: b18 article-title: Task-evoked dynamic network analysis through hidden Markov modeling publication-title: Front. Neurosci. – volume: 233 start-page: 507 year: 2014 end-page: 521 ident: b25 article-title: Sequential Monte Carlo sampling in hidden Markov models of nonlinear dynamical systems publication-title: Appl. Math. Comput. – volume: 1111 start-page: 119 year: 2004 end-page: 156 ident: b82 article-title: On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion publication-title: Stochastic Process. Appl. – start-page: 17 year: 1999 end-page: 32 ident: b87 article-title: Generalized multifractional Brownian motion: definition and preliminary results publication-title: Fractals – volume: 83 year: 2018 ident: b66 article-title: Multiple sclerosis pathology publication-title: Cold Spring Harbor Perspect. Med. – year: 2000 ident: b75 article-title: Fraclab – year: 2012 ident: b100 article-title: Constituting an Optimum Mathematical Model for the Diagnosis of Multiple Sclerosis – volume: 1112 start-page: 1900 year: 2016 ident: b62 article-title: Multiple sclerosis: integration of modeling with biology, clinical and imaging measures to provide better monitoring of disease progression and prediction of outcome publication-title: Neural Regener. Res. – volume: 38821 start-page: 4586 year: 2009 end-page: 4592 ident: b78 article-title: Variable-order fractional differential operators in anomalous diffusion modeling publication-title: Physica A – volume: 177 year: 2015 ident: b23 article-title: Hidden Markov models for stochastic thermodynamics publication-title: New J. Phys. – volume: 384 start-page: 172 year: 2005 end-page: 176 ident: b108 article-title: Fractal dimension of cerebral cortical surface in schizophrenia and obsessivecompulsive disorder publication-title: Neurosci. Lett. – volume: 463 start-page: 188 year: 2016 end-page: 201 ident: b36 article-title: Multifractal detrended cross correlation analysis of foreign exchange and SENSEX fluctuation in Indian perspective publication-title: Physica A – volume: 540 year: 2020 ident: b40 article-title: The chaotic characteristics detection based on multifractal detrended fluctuation analysis of the elderly 12-lead ECG signals publication-title: Physica A – volume: 33 start-page: 1444 year: 1983 end-page: 1452 ident: b71 article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale EDSS publication-title: Neurology – volume: 136 year: 2020 ident: b32 article-title: Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification publication-title: Chaos Solitons Fractals – start-page: 733 year: 2008 end-page: 736 ident: b29 article-title: Markovian segmentation of 3D brain MRI to detect multiple sclerosis lesions publication-title: 2008 15th IEEE International Conference on Image Processing, San Diego, CA – volume: 45 start-page: 250 year: 2019 end-page: 261 ident: b111 article-title: Mobile cloud computing based stroke healthcare system publication-title: Int. J. Inf. Manage. – volume: 112 start-page: 103 year: 2015 end-page: 118 ident: b15 article-title: Dueling hidden Markov models for virus analysis publication-title: J. Comput. Virol. Hack. Tech. – year: 1999 ident: b79 article-title: From self-similarity to local self-similarity: the estimation problem publication-title: Fractals – volume: 2504 year: 2017 ident: b53 article-title: Clustering multiple sclerosis subgroups with multifractal methods and self-organizing map algorithm publication-title: Fractals – volume: 83 start-page: 646 year: 2013 end-page: 657 ident: b52 article-title: Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility publication-title: Neuroimage – volume: 153 start-page: 292 year: 2016 end-page: 303 ident: b67 article-title: MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines publication-title: Lancet Neurol. – volume: 545 year: 2020 ident: b45 article-title: Fluctuation analysis of electric power loads in Europe: correlation multifractality vs. distribution function multifractality publication-title: Physica A – volume: 168 start-page: 4497 year: 2014 end-page: 4520 ident: b49 article-title: Fractal structure and entropy production within the central nervous system publication-title: Entropy – volume: 19 start-page: 11 year: 2019 ident: b14 article-title: Modelling reassurances of clinicians with hidden Markov models publication-title: BMC Med. Res. Methodol. – volume: 54 start-page: 115 year: 2019 end-page: 120 ident: b56 article-title: Detection of different levels of multiple sclerosis by assessing nonlinear characteristics of posture publication-title: Int. Clin. Neurosci. J. – reference: F. Forbes, S. Doyle, D. Garcia-Lorenzo, C. Barillot, M. Dojat, A weighted multi-sequence markov model for brain lesion segmentation, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, March, pp. 225–232. – year: 2005 ident: b64 article-title: Multiple Sclerosis as a Neuronal Disease – year: 1988 ident: b80 article-title: Fractals Everywhere – start-page: 438 year: 2014 ident: b39 article-title: A wavelet-based method for multifractal analysis of medical signals: Application to dynamic infrared thermograms of breast cancer publication-title: Nonlinear Dynamics of Electronic Systems. NDES 2014. Communications in Computer and Information Science – volume: 106 start-page: 402 year: 2009 end-page: 415 ident: b19 article-title: Hidden Markov models and their applications in biological sequence analysis publication-title: Curr. Genom. – start-page: 12 year: 2017 ident: b94 article-title: Wavelet denoising of vehicle platform vibration signal based on threshold neural network publication-title: Shock Vib. – volume: 45 start-page: 30 year: 2017 ident: b93 article-title: Fractal dimension in medical imaging: A review publication-title: Int. Res. J. Eng. Technol. – volume: 132 start-page: 190 year: 2019 end-page: 211 ident: b5 article-title: Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data publication-title: Comput. Statist. Data Anal. – start-page: 272 year: 2018 ident: b13 article-title: Artificial intelligence and machine learning in bioinformatics publication-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Vol. 55 – year: 2018 ident: b31 article-title: Stroke subtype clustering by multifractal Bayesian denoising with fuzzy C means and K-means algorithms publication-title: Complexity – start-page: 205 year: 2010 end-page: 212 ident: b96 article-title: An improved hidden Markov model for literature metadata extraction publication-title: International Conference on Intelligent Computing – volume: 57 year: 2020 ident: b22 article-title: Predicting the occurrence of wrist tremor based on electromyography using a hidden Markov model and entropy based learning algorithm publication-title: Biomed. Signal Process. Control – volume: 48 start-page: 409 year: 2003 end-page: 413 ident: b76 article-title: Landau-Lifshitz equations for magnetic systems with constant and variable memory publication-title: Dokl. Phys. – volume: 5 year: 2019 ident: b20 article-title: A novel algorithm for parameter estimation of hidden Markov model inspired by ant colony optimization publication-title: Heliyon – volume: 120 start-page: 83 year: 2019 end-page: 94 ident: b42 article-title: Multifractal properties of sample paths of ground state-transformed jump processes publication-title: Chaos Solitons Fractals – volume: 501 start-page: 14770 year: 2017 end-page: 14775 ident: b24 article-title: Forecasting in industrial process control: A hidden Markov model approach publication-title: IFAC-PapersOnLine – volume: 172 start-page: 162 year: 2018 end-page: 173 ident: b70 article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria publication-title: Lancet Neurol. – year: 2019 ident: b74 article-title: The Mathworks, MATLAB R 2019b – volume: 4412 start-page: 6404 year: 2017 end-page: 6412 ident: b33 article-title: Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography publication-title: Med. Phys. – volume: 491 start-page: 188 year: 2018 end-page: 198 ident: b48 article-title: Multifractal detrended cross correlation analysis of-an in depth study publication-title: Physica A – reference: J.L. Véhel, P. Legrand, Bayesian multifractal signal denoising, in: Proceedings of the IEEE International Conference on Accoustics, Speech, and Signal Processing, 2003, pp. 177–180. – year: 2020 ident: b97 article-title: Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks publication-title: Future Gener. Comput. Syst. – volume: vol. 132 start-page: 197 year: 2002 end-page: 209 ident: b84 publication-title: Signal Enhancement Based on Holder Regularity Analysis – volume: 268 start-page: 1160 year: 2008 end-page: 1166 ident: b60 article-title: Texture analysis of multiple sclerosis: a comparative study publication-title: Magn. Reson. Imaging – start-page: 36 year: 2017 end-page: 43 ident: b68 article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels publication-title: CNS & Neurological Disorders-Drug Targets Formerly Current Drug Targets-CNS & Neurological Disorders, Vol. 161 – volume: 24 year: 2019 ident: b51 article-title: Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment publication-title: NeuroImage: Clinical – start-page: 426 year: 2020 end-page: 441 ident: b63 article-title: Multifractional Gaussian process based on self-similarity modelling for MS subgroups’ clustering with fuzzy C-means publication-title: International Conference on Computational Science and its Applications – volume: 48 start-page: 409 year: 2003 ident: 10.1016/j.knosys.2022.108694_b76 article-title: Landau-Lifshitz equations for magnetic systems with constant and variable memory publication-title: Dokl. Phys. doi: 10.1134/1.1606753 – volume: 503 start-page: 1007 year: 2018 ident: 10.1016/j.knosys.2022.108694_b9 article-title: Hidden Markov model analysis of extreme behaviors of foreign exchange rates publication-title: Physica A doi: 10.1016/j.physa.2018.07.060 – volume: 268 start-page: 1160 year: 2008 ident: 10.1016/j.knosys.2022.108694_b60 article-title: Texture analysis of multiple sclerosis: a comparative study publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.01.016 – start-page: 733 year: 2008 ident: 10.1016/j.knosys.2022.108694_b29 article-title: Markovian segmentation of 3D brain MRI to detect multiple sclerosis lesions – volume: 38821 start-page: 4586 year: 2009 ident: 10.1016/j.knosys.2022.108694_b78 article-title: Variable-order fractional differential operators in anomalous diffusion modeling publication-title: Physica A doi: 10.1016/j.physa.2009.07.024 – volume: 48 start-page: 285 year: 2003 ident: 10.1016/j.knosys.2022.108694_b77 article-title: Statistical physics of dynamic systems with variable memory publication-title: Dokl. Phys. doi: 10.1134/1.1591315 – year: 2000 ident: 10.1016/j.knosys.2022.108694_b75 – start-page: 36 year: 2017 ident: 10.1016/j.knosys.2022.108694_b68 article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels – volume: 57 year: 2020 ident: 10.1016/j.knosys.2022.108694_b22 article-title: Predicting the occurrence of wrist tremor based on electromyography using a hidden Markov model and entropy based learning algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101739 – volume: 112 start-page: 103 year: 2015 ident: 10.1016/j.knosys.2022.108694_b15 article-title: Dueling hidden Markov models for virus analysis publication-title: J. Comput. Virol. Hack. Tech. doi: 10.1007/s11416-014-0232-9 – volume: 1111 start-page: 119 year: 2004 ident: 10.1016/j.knosys.2022.108694_b82 article-title: On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion publication-title: Stochastic Process. Appl. doi: 10.1016/j.spa.2003.11.002 – volume: 233 start-page: 507 year: 2014 ident: 10.1016/j.knosys.2022.108694_b25 article-title: Sequential Monte Carlo sampling in hidden Markov models of nonlinear dynamical systems publication-title: Appl. Math. Comput. – volume: 532 start-page: 471 year: 2010 ident: 10.1016/j.knosys.2022.108694_b47 article-title: Alzheimer’s disease neuroimaging initiative. Fractal dimension analysis of the cortical ribbon in mild alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.050 – volume: 2415 start-page: 2335 year: 2005 ident: 10.1016/j.knosys.2022.108694_b28 article-title: Application of hidden Markov models to multiple sclerosis lesion count data publication-title: Stat. Med. doi: 10.1002/sim.2108 – volume: 463 start-page: 188 year: 2016 ident: 10.1016/j.knosys.2022.108694_b36 article-title: Multifractal detrended cross correlation analysis of foreign exchange and SENSEX fluctuation in Indian perspective publication-title: Physica A doi: 10.1016/j.physa.2016.07.027 – volume: 55 start-page: 738 issue: 1 year: 2011 ident: 10.1016/j.knosys.2022.108694_b91 article-title: 2D waveletbased spectra with applications publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2010.06.020 – year: 2013 ident: 10.1016/j.knosys.2022.108694_b41 article-title: Scale-specific multifractal medical image analysis publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/262931 – start-page: 81 year: 2015 ident: 10.1016/j.knosys.2022.108694_b1 article-title: Efficient learning machines: theories, concepts, and applications for engineers and system designers publication-title: Apress – volume: 2504 year: 2017 ident: 10.1016/j.knosys.2022.108694_b53 article-title: Clustering multiple sclerosis subgroups with multifractal methods and self-organizing map algorithm publication-title: Fractals – volume: 86, 581 start-page: 27 issue: 602 year: 2002 ident: 10.1016/j.knosys.2022.108694_b86 article-title: The generalized multifractional field: a nice tool for the study of the generalized multifractional Brownian motion publication-title: J. Fourier Anal. Appl. – volume: 1112 start-page: 1900 year: 2016 ident: 10.1016/j.knosys.2022.108694_b62 article-title: Multiple sclerosis: integration of modeling with biology, clinical and imaging measures to provide better monitoring of disease progression and prediction of outcome publication-title: Neural Regener. Res. doi: 10.4103/1673-5374.195274 – volume: 19 start-page: 11 issue: 1 year: 2019 ident: 10.1016/j.knosys.2022.108694_b14 article-title: Modelling reassurances of clinicians with hidden Markov models publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0629-0 – volume: 116 year: 2020 ident: 10.1016/j.knosys.2022.108694_b17 article-title: Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and hidden Markov model publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103571 – volume: 501 start-page: 14770 year: 2017 ident: 10.1016/j.knosys.2022.108694_b24 article-title: Forecasting in industrial process control: A hidden Markov model approach publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.2591 – volume: 3081 start-page: 79 issue: 27 year: 1989 ident: 10.1016/j.knosys.2022.108694_b81 article-title: Exposants de Hölder en des points donnés et coefficients d’ondelettes publication-title: C. R. Acad. Sci. Paris – start-page: 169 year: 2010 ident: 10.1016/j.knosys.2022.108694_b106 article-title: Estimating local surface complexity maps using spherical harmonic reconstructions – year: 1999 ident: 10.1016/j.knosys.2022.108694_b79 article-title: From self-similarity to local self-similarity: the estimation problem – volume: 491 start-page: 188 year: 2018 ident: 10.1016/j.knosys.2022.108694_b48 article-title: Multifractal detrended cross correlation analysis of-an in depth study publication-title: Physica A doi: 10.1016/j.physa.2017.08.155 – start-page: 492 year: 2007 ident: 10.1016/j.knosys.2022.108694_b103 article-title: Fast state discovery for HMM model selection and learning – volume: 132 start-page: 190 year: 2019 ident: 10.1016/j.knosys.2022.108694_b5 article-title: Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2018.08.004 – volume: 81 start-page: 5431 year: 2018 ident: 10.1016/j.knosys.2022.108694_b34 article-title: Age is reflected in the fractal dimensionality of MRI diffusion based tractography publication-title: Sci. Rep. doi: 10.1038/s41598-018-23769-6 – start-page: 257 year: 2019 ident: 10.1016/j.knosys.2022.108694_b54 article-title: Multifractal analysis with L2 norm denoising technique: Modelling of MS subgroups classification – volume: 45 start-page: 250 year: 2019 ident: 10.1016/j.knosys.2022.108694_b111 article-title: Mobile cloud computing based stroke healthcare system publication-title: Int. J. Inf. Manage. – year: 2018 ident: 10.1016/j.knosys.2022.108694_b31 article-title: Stroke subtype clustering by multifractal Bayesian denoising with fuzzy C means and K-means algorithms publication-title: Complexity doi: 10.1155/2018/9034647 – volume: 363 start-page: 543 year: 2007 ident: 10.1016/j.knosys.2022.108694_b59 article-title: Fractal dimension and white matter changes in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.057 – start-page: 35 year: 2017 ident: 10.1016/j.knosys.2022.108694_b30 article-title: Chapter 3 - development of early warning models – volume: 168 start-page: 4497 year: 2014 ident: 10.1016/j.knosys.2022.108694_b49 article-title: Fractal structure and entropy production within the central nervous system publication-title: Entropy doi: 10.3390/e16084497 – year: 2020 ident: 10.1016/j.knosys.2022.108694_b97 article-title: Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.014 – start-page: 1 year: 2008 ident: 10.1016/j.knosys.2022.108694_b26 article-title: MS lesion segmentation based on hidden Markov chains – volume: 2821 start-page: 67 issue: 2 year: 2009 ident: 10.1016/j.knosys.2022.108694_b58 article-title: Fractal dimension analysis of grey matter in multiple sclerosis publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2008.12.023 – volume: 12 start-page: 603 year: 2018 ident: 10.1016/j.knosys.2022.108694_b18 article-title: Task-evoked dynamic network analysis through hidden Markov modeling publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00603 – volume: 83 start-page: 646 year: 2013 ident: 10.1016/j.knosys.2022.108694_b52 article-title: Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.06.072 – volume: 159 start-page: 2521 year: 2010 ident: 10.1016/j.knosys.2022.108694_b8 article-title: A self-tuning model for inflation rate dynamics publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.09.018 – start-page: 1 year: 1996 ident: 10.1016/j.knosys.2022.108694_b90 article-title: Numerical computation of the large deviation multifractal spectrum – year: 2012 ident: 10.1016/j.knosys.2022.108694_b69 – start-page: 438 year: 2014 ident: 10.1016/j.knosys.2022.108694_b39 article-title: A wavelet-based method for multifractal analysis of medical signals: Application to dynamic infrared thermograms of breast cancer – volume: 55 Suppl 1 start-page: S80 year: 2018 ident: 10.1016/j.knosys.2022.108694_b72 article-title: Neurostatus and EDSS calculation with cases publication-title: Arch. Neuropsychiatry – volume: 24 start-page: 771 year: 1994 ident: 10.1016/j.knosys.2022.108694_b107 article-title: Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients publication-title: Psychol. Med. doi: 10.1017/S0033291700027926 – start-page: 17 year: 1999 ident: 10.1016/j.knosys.2022.108694_b87 article-title: Generalized multifractional Brownian motion: definition and preliminary results – volume: 698 year: 2020 ident: 10.1016/j.knosys.2022.108694_b21 article-title: Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134246 – year: 2005 ident: 10.1016/j.knosys.2022.108694_b64 – start-page: 272 year: 2018 ident: 10.1016/j.knosys.2022.108694_b13 article-title: Artificial intelligence and machine learning in bioinformatics – volume: 364 start-page: 107 year: 2018 ident: 10.1016/j.knosys.2022.108694_b7 article-title: Initial processing of volcanic seismic signals using hidden Markov models: Nevado del Huila, Colombia publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2018.09.008 – volume: 185 year: 2019 ident: 10.1016/j.knosys.2022.108694_b12 article-title: DNMHMM: An approach to identify the differential nucleosome regions in multiple cell types based on a hidden Markov model publication-title: Biosystems doi: 10.1016/j.biosystems.2019.104033 – start-page: 274 year: 2005 ident: 10.1016/j.knosys.2022.108694_b92 article-title: An interactive EA for multifractal bayesian denoising – volume: 45 start-page: 30 issue: 12 year: 2017 ident: 10.1016/j.knosys.2022.108694_b93 article-title: Fractal dimension in medical imaging: A review publication-title: Int. Res. J. Eng. Technol. – ident: 10.1016/j.knosys.2022.108694_b89 doi: 10.1109/ICASSP.2003.1201647 – year: 2016 ident: 10.1016/j.knosys.2022.108694_b110 article-title: Fractal dimension versus process complexity publication-title: Adv. Math. Phys. doi: 10.1155/2016/5030593 – year: 2018 ident: 10.1016/j.knosys.2022.108694_b88 – start-page: 1381 year: 1992 ident: 10.1016/j.knosys.2022.108694_b102 article-title: A generalization of discrete hidden Markov model and of viterbi algorithm – year: 2018 ident: 10.1016/j.knosys.2022.108694_b98 article-title: Chapter 9: Hidden Markov models – volume: 836 start-page: 836 year: 1999 ident: 10.1016/j.knosys.2022.108694_b38 article-title: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction publication-title: Am. J. Cardiol. doi: 10.1016/S0002-9149(98)01076-5 – start-page: 155 year: 2001 ident: 10.1016/j.knosys.2022.108694_b101 article-title: Hidden Markov models: applications in computer vision – ident: 10.1016/j.knosys.2022.108694_b27 doi: 10.1109/ISBI.2010.5490413 – start-page: 205 year: 2010 ident: 10.1016/j.knosys.2022.108694_b96 article-title: An improved hidden Markov model for literature metadata extraction – volume: 172 start-page: 162 year: 2018 ident: 10.1016/j.knosys.2022.108694_b70 article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(17)30470-2 – volume: 206 year: 2020 ident: 10.1016/j.knosys.2022.108694_b10 article-title: Sequentially spherical data modeling with hidden Markov models and its application to fMRI data analysis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106341 – volume: 83 year: 2018 ident: 10.1016/j.knosys.2022.108694_b66 article-title: Multiple sclerosis pathology publication-title: Cold Spring Harbor Perspect. Med. – start-page: 359 year: 2015 ident: 10.1016/j.knosys.2022.108694_b105 article-title: An introduction to algorithms and the big O notation – year: 1988 ident: 10.1016/j.knosys.2022.108694_b80 – volume: 187 year: 2020 ident: 10.1016/j.knosys.2022.108694_b44 article-title: Investigation on pore structure and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106757 – volume: 5 issue: 3 year: 2019 ident: 10.1016/j.knosys.2022.108694_b20 article-title: A novel algorithm for parameter estimation of hidden Markov model inspired by ant colony optimization publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01299 – volume: 321 start-page: 1 year: 2016 ident: 10.1016/j.knosys.2022.108694_b37 article-title: Forecasting crude oil market volatility: A Markov switching multifractal volatility approach publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.02.006 – volume: 2071 start-page: 23 year: 2009 ident: 10.1016/j.knosys.2022.108694_b50 article-title: Fractal-based brain tumor detection in multimodal MRI publication-title: Appl. Math. Comput. – volume: 177 year: 2015 ident: 10.1016/j.knosys.2022.108694_b23 article-title: Hidden Markov models for stochastic thermodynamics publication-title: New J. Phys. – volume: 120 start-page: 83 year: 2019 ident: 10.1016/j.knosys.2022.108694_b42 article-title: Multifractal properties of sample paths of ground state-transformed jump processes publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.01.008 – volume: 54 start-page: 115 year: 2019 ident: 10.1016/j.knosys.2022.108694_b56 article-title: Detection of different levels of multiple sclerosis by assessing nonlinear characteristics of posture publication-title: Int. Clin. Neurosci. J. – volume: 24 year: 2019 ident: 10.1016/j.knosys.2022.108694_b51 article-title: Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment publication-title: NeuroImage: Clinical – volume: 4752229 year: 2019 ident: 10.1016/j.knosys.2022.108694_b43 article-title: Multifractal formalisms for multivariate analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: vol. 132 start-page: 197 year: 2002 ident: 10.1016/j.knosys.2022.108694_b84 – volume: 384 start-page: 172 year: 2005 ident: 10.1016/j.knosys.2022.108694_b108 article-title: Fractal dimension of cerebral cortical surface in schizophrenia and obsessivecompulsive disorder publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2005.04.078 – volume: 540 year: 2020 ident: 10.1016/j.knosys.2022.108694_b40 article-title: The chaotic characteristics detection based on multifractal detrended fluctuation analysis of the elderly 12-lead ECG signals publication-title: Physica A doi: 10.1016/j.physa.2019.123234 – start-page: 753 year: 2019 ident: 10.1016/j.knosys.2022.108694_b95 article-title: Hidden markov models – volume: 136 year: 2020 ident: 10.1016/j.knosys.2022.108694_b32 article-title: Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109820 – year: 2012 ident: 10.1016/j.knosys.2022.108694_b100 – volume: 504 start-page: 162 year: 2012 ident: 10.1016/j.knosys.2022.108694_b61 article-title: Automatic determination of MS lesion subtypes based on fractal analysis in brain MR images publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2012.54021 – year: 2019 ident: 10.1016/j.knosys.2022.108694_b74 – start-page: 370 year: 2018 ident: 10.1016/j.knosys.2022.108694_b57 article-title: Fractal analysis of retinal vascular morphology in multiple sclerosis – volume: 118 start-page: 36 year: 2018 ident: 10.1016/j.knosys.2022.108694_b35 article-title: Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2018.02.006 – start-page: 263 year: 2012 ident: 10.1016/j.knosys.2022.108694_b6 article-title: Quantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding doi: 10.1016/B978-0-12-388403-9.00011-4 – volume: 275 start-page: 18 year: 2016 ident: 10.1016/j.knosys.2022.108694_b16 article-title: Markov process models of the dynamics of HIV reservoirs publication-title: Math. Biosci. doi: 10.1016/j.mbs.2016.02.009 – volume: 174 start-page: 215 issue: 2 year: 2010 ident: 10.1016/j.knosys.2022.108694_b11 article-title: Hidden semi-Markov models publication-title: Artificial Intelligence doi: 10.1016/j.artint.2009.11.011 – year: 2018 ident: 10.1016/j.knosys.2022.108694_b3 – volume: 77 start-page: 3 year: 2000 ident: 10.1016/j.knosys.2022.108694_b109 article-title: Computational complexity of fractal sets publication-title: Real Anal. Exchange – year: 2017 ident: 10.1016/j.knosys.2022.108694_b73 – start-page: 12 year: 2017 ident: 10.1016/j.knosys.2022.108694_b94 article-title: Wavelet denoising of vehicle platform vibration signal based on threshold neural network publication-title: Shock Vib. – volume: 31 start-page: 7 issue: 2 year: 2000 ident: 10.1016/j.knosys.2022.108694_b83 article-title: The generalized multifractional Brownian motion publication-title: Stat. Inference Stoch. Process. doi: 10.1023/A:1009901714819 – volume: 4412 start-page: 6404 year: 2017 ident: 10.1016/j.knosys.2022.108694_b33 article-title: Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography publication-title: Med. Phys. doi: 10.1002/mp.12603 – volume: 545 year: 2020 ident: 10.1016/j.knosys.2022.108694_b45 article-title: Fluctuation analysis of electric power loads in Europe: correlation multifractality vs. distribution function multifractality publication-title: Physica A doi: 10.1016/j.physa.2019.123821 – start-page: 27 year: 2012 ident: 10.1016/j.knosys.2022.108694_b4 article-title: Data mining for microbiologists doi: 10.1016/B978-0-08-099387-4.00002-8 – year: 2010 ident: 10.1016/j.knosys.2022.108694_b99 – year: 2009 ident: 10.1016/j.knosys.2022.108694_b104 – volume: 106 start-page: 402 year: 2009 ident: 10.1016/j.knosys.2022.108694_b19 article-title: Hidden Markov models and their applications in biological sequence analysis publication-title: Curr. Genom. doi: 10.2174/138920209789177575 – volume: vol. 9 year: 1997 ident: 10.1016/j.knosys.2022.108694_b85 – start-page: 121 year: 2018 ident: 10.1016/j.knosys.2022.108694_b55 article-title: ANN classification of MS subgroups with diffusion limited aggregation – start-page: 426 year: 2020 ident: 10.1016/j.knosys.2022.108694_b63 article-title: Multifractional Gaussian process based on self-similarity modelling for MS subgroups’ clustering with fuzzy C-means – start-page: 994 year: 1997 ident: 10.1016/j.knosys.2022.108694_b2 article-title: Coupled hidden Markov models for complex action recognition – volume: 833 start-page: 278 year: 2014 ident: 10.1016/j.knosys.2022.108694_b65 article-title: Defining the clinical course of multiple sclerosis the 2013 revisions publication-title: Neurology doi: 10.1212/WNL.0000000000000560 – volume: 113 year: 2020 ident: 10.1016/j.knosys.2022.108694_b46 article-title: Do complex’financial models really lead to complex dynamics? Agent-based models and multifractality publication-title: J. Econom. Dynam. Control doi: 10.1016/j.jedc.2020.103855 – volume: 153 start-page: 292 year: 2016 ident: 10.1016/j.knosys.2022.108694_b67 article-title: MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(15)00393-2 – volume: 33 start-page: 1444 issue: 11 year: 1983 ident: 10.1016/j.knosys.2022.108694_b71 article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale EDSS publication-title: Neurology doi: 10.1212/WNL.33.11.1444 |
| SSID | ssj0002218 |
| Score | 2.3904138 |
| Snippet | Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108694 |
| SubjectTerms | Algorithms Alternative approaches Apoptosis Artificial intelligence Attributes Bayesian analysis Brain Complex Complex systems Complexity Computation Computational dynamic complexity analyses Datasets Decision making Differentiation Dissemination Forward–Backward algorithm Fractals Hidden Markov Model Integrated approach Integrative approach Irregularities Markov analysis Markov chains Mathematical analysis Mathematical models Matrices Matrices (mathematics) Medical diagnosis Medical prognosis Medicine Multifractal analysis Multiple sclerosis Multiple Sclerosis’ subgroups Neurological disorders Nonlinear stochastic processes Physicians Precision medicine Prediction models Predictions Prognosis Self-similarity Singularities Spatial data Stochastic models Stochastic processes Subgroups Time Vector quantization Viterbi algorithm |
| Title | Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-á-vis the differential prognosis and differentiation of Multiple Sclerosis’ subgroups |
| URI | https://dx.doi.org/10.1016/j.knosys.2022.108694 https://www.proquest.com/docview/2672768152 |
| Volume | 246 |
| WOSCitedRecordID | wos000795156400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2FFCFeuBQqCgXtA4IHtMheO748VihVgTYglErhydq111JKcEKdRIG_4Sf4AX6ET2FmL7Ypl8IDL5HltWPLczx7djwzh5CHucwHIo04iyRXLAxUyBKZliwslRrAhJfIQmixiXg0SiaT9HWv983VwqxncVUlm026-K-mhn1gbCyd_QdzN38KO2AbjA6_YHb4_SvDH2JTkEoX4czXWuvMdAPQqYMlFkXpghEUjmY4h-k-AcVU-z2ssayWtjTTpJurDfJ0LZhTP1lPa6Y_rfsMNjVpdQorSwy9Y7ZXNcceJ3jFzpDjpcdN_iLc9RkeiUkc9Urq6pK6S5Vfumifvcu601sdZwhsNK2Z71s1m35qI7IzJaqVdqWr91hS0j1Brgqh3f8bYVTDXcAD1spexHgb8GgqcZzza9OfTFjTY7Fnm9gq49STGFYRoZd2vT4Pu37b_-VsYgIbp0_fwZP7iL3dOdfKVEaW-cfm3aNX2cHJ0VE2Hk7GjxYfGOqa4fd_K_JyiWzxeJAmfbK1_3w4edGwBc51DLq5b1feqXMQf77w7-jTOSKh2dH4BrlmlzV038DxJumpaptcd5Ih1D7EbXLl2OZy3CJfDFCpASrVQKUAG9oFKu0ClbZApV2g0hao1ACVIlC_fkaQUgAp7YKUNiDVVzsHUjovqQMpbUD6mDYQvU1ODobjZ4fMqoiwPAjCJUtUIUQqZFCC_ymUlIWvuBhwT3hCxKXMkZUXIlDgrHgYCBEFiivl52nhl6nwgh3Sr-aVukMorBVEDCOBJ5KQSyEKoN9JLJI451FeyF0SOONkuW2xj0ovs8zlUp5mxqQZmjQzJt0lrDlrYVrMXHB87OyeWZps6G8GuL3gzD0Hk8x6LBjHXIwoAR5_98_D98jV9nXcI314g9V9cjlfL6f12QOL6-_gDPcQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+Model+and+multifractal+method-based+predictive+quantization+complexity+models+vis-%C3%A1-vis+the+differential+prognosis+and+differentiation+of+Multiple+Sclerosis%27+subgroups&rft.jtitle=Knowledge-based+systems&rft.au=Karaca%2C+Yeliz&rft.au=Baleanu%2C+Dumitru&rft.au=Karabudak%2C+Rana&rft.date=2022-06-21&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=246&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2022.108694&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |