Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-á-vis the differential prognosis and differentiation of Multiple Sclerosis’ subgroups

Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enab...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 246; p. 108694
Main Authors: Karaca, Yeliz, Baleanu, Dumitru, Karabudak, Rana
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 21.06.2022
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enabling the mathematical formulation of neural dynamics across spatial and temporal scales. The human brain with its fractal structure demonstrates complex dynamics and fractals in the brain are characterized by irregularity, singularity and self-similarity in terms of form at different observation levels, making detection difficult as observations in real-time occurrences can be time variant, discrete, continuous or noisy. Multiple Sclerosis (MS) is an autoimmune degenerative disease with time and space related dissemination, leading to neuronal apoptosis, coupled with some subtle features that could be overlooked by physicians. This study, through the proposed integrated approach with multi-source complex spatial data, aims to attain accurate prediction, diagnosis and prognosis of MS subgroups by HMM with Viterbi algorithm and Forward–Backward algorithm as the dynamic and efficient products of knowledge-based and Artificial Intelligence (AI)-based systems within the framework of precision medicine. Multifractal Bayesian method (MFM) accordingly applied to identify and eliminate “insignificant” irregularities while maintaining “significant” singularities. An efficient modelling of HMM is proposed to diagnose and predict the course of MS while using MFM method. Unlike the methods employed in previous studies, our proposed integrated novel method encompasses the subsequent approaches based on reliable MS dataset (X) collected: (i) MFM method was applied (X) to MS dataset to characterize the irregular, self-similar and significant attributes, thus, attributes with “insignificant” irregularities were eliminated and “significant” singularities were maintained. MFM-MS dataset (Xˆ) was generated. (ii) The continuous values in the MS dataset (X) and MFM-MS dataset (Xˆ) were converted into discrete values through vector quantization method of the HMM (iii) Through transitional matrices, different observation matrices were computed from the both datasets. (v) Computational complexity has been computed for both datasets. (vi) The results of the HMM models based on observation matrices obtained from both datasets were compared. In terms of the integrated HMM model proposed and the MS dataset handled, no earlier work exists in the literature. The experimental results demonstrate the applicability and accuracy of our novel proposed integrated method, HMM and Multifractal (HMM-MFM) method, for the application to the MS dataset (X). Compared with conventional methods, our novel method has achieved more superiority regarding extracting subtle and hidden details, which are significant for distinguishing different dynamic and complex systems including engineering and other related applied sciences. Thus, we have aimed at pointing a new frontier by providing a novel alternative mathematical model to facilitate the critical decision-making, management and prediction processes among the related areas in chaotic, dynamic complex systems with intricate and transient states. •Novel HMM-MFM model reveals critical significance of predictive quantization in dynamic complexity.•Predictive quantization by HMM-MFM model for dynamic and transient states in varying complex systems.•Viterbi algorithm’s recursion enables maximization and uncovering of the most probable hidden state sequence.•Computational complexity and reliability of Forward–Backward procedure, guaranteeing local maxima and maximizing the objective function φ(N2T).•Multifarious knowledge-based approach with a facilitating function in precision medicine ensuring personalized treatment tailoring.
AbstractList Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enabling the mathematical formulation of neural dynamics across spatial and temporal scales. The human brain with its fractal structure demonstrates complex dynamics and fractals in the brain are characterized by irregularity, singularity and self-similarity in terms of form at different observation levels, making detection difficult as observations in real-time occurrences can be time variant, discrete, continuous or noisy. Multiple Sclerosis (MS) is an autoimmune degenerative disease with time and space related dissemination, leading to neuronal apoptosis, coupled with some subtle features that could be overlooked by physicians. This study, through the proposed integrated approach with multi-source complex spatial data, aims to attain accurate prediction, diagnosis and prognosis of MS subgroups by HMM with Viterbi algorithm and Forward–Backward algorithm as the dynamic and efficient products of knowledge-based and Artificial Intelligence (AI)-based systems within the framework of precision medicine. Multifractal Bayesian method (MFM) accordingly applied to identify and eliminate “insignificant” irregularities while maintaining “significant” singularities. An efficient modelling of HMM is proposed to diagnose and predict the course of MS while using MFM method. Unlike the methods employed in previous studies, our proposed integrated novel method encompasses the subsequent approaches based on reliable MS dataset (X) collected: (i) MFM method was applied (X) to MS dataset to characterize the irregular, self-similar and significant attributes, thus, attributes with “insignificant” irregularities were eliminated and “significant” singularities were maintained. MFM-MS dataset (Xˆ) was generated. (ii) The continuous values in the MS dataset (X) and MFM-MS dataset (Xˆ) were converted into discrete values through vector quantization method of the HMM (iii) Through transitional matrices, different observation matrices were computed from the both datasets. (v) Computational complexity has been computed for both datasets. (vi) The results of the HMM models based on observation matrices obtained from both datasets were compared. In terms of the integrated HMM model proposed and the MS dataset handled, no earlier work exists in the literature. The experimental results demonstrate the applicability and accuracy of our novel proposed integrated method, HMM and Multifractal (HMM-MFM) method, for the application to the MS dataset (X). Compared with conventional methods, our novel method has achieved more superiority regarding extracting subtle and hidden details, which are significant for distinguishing different dynamic and complex systems including engineering and other related applied sciences. Thus, we have aimed at pointing a new frontier by providing a novel alternative mathematical model to facilitate the critical decision-making, management and prediction processes among the related areas in chaotic, dynamic complex systems with intricate and transient states. •Novel HMM-MFM model reveals critical significance of predictive quantization in dynamic complexity.•Predictive quantization by HMM-MFM model for dynamic and transient states in varying complex systems.•Viterbi algorithm’s recursion enables maximization and uncovering of the most probable hidden state sequence.•Computational complexity and reliability of Forward–Backward procedure, guaranteeing local maxima and maximizing the objective function φ(N2T).•Multifarious knowledge-based approach with a facilitating function in precision medicine ensuring personalized treatment tailoring.
Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enabling the mathematical formulation of neural dynamics across spatial and temporal scales. The human brain with its fractal structure demonstrates complex dynamics and fractals in the brain are characterized by irregularity, singularity and self-similarity in terms of form at different observation levels, making detection difficult as observations in real-time occurrences can be time variant, discrete, continuous or noisy. Multiple Sclerosis (MS) is an autoimmune degenerative disease with time and space related dissemination, leading to neuronal apoptosis, coupled with some subtle features that could be overlooked by physicians. This study, through the proposed integrated approach with multi-source complex spatial data, aims to attain accurate prediction, diagnosis and prognosis of MS subgroups by HMM with Viterbi algorithm and Forward–Backward algorithm as the dynamic and efficient products of knowledge-based and Artificial Intelligence (AI)-based systems within the framework of precision medicine. Multifractal Bayesian method (MFM) accordingly applied to identify and eliminate "insignificant" irregularities while maintaining "significant" singularities. An efficient modelling of HMM is proposed to diagnose and predict the course of MS while using MFM method. Unlike the methods employed in previous studies, our proposed integrated novel method encompasses the subsequent approaches based on reliable MS dataset (X) collected: (i) MFM method was applied (X) to MS dataset to characterize the irregular, self-similar and significant attributes, thus, attributes with "insignificant" irregularities were eliminated and "significant" singularities were maintained. MFM-MS dataset (X) was generated. (ii) The continuous values in the MS dataset (X) and MFM-MS dataset (X) were converted into discrete values through vector quantization method of the HMM (iii) Through transitional matrices, different observation matrices were computed from the both datasets. (v) Computational complexity has been computed for both datasets. (vi) The results of the HMM models based on observation matrices obtained from both datasets were compared. In terms of the integrated HMM model proposed and the MS dataset handled, no earlier work exists in the literature. The experimental results demonstrate the applicability and accuracy of our novel proposed integrated method, HMM and Multifractal (HMM-MFM) method, for the application to the MS dataset (X). Compared with conventional methods, our novel method has achieved more superiority regarding extracting subtle and hidden details, which are significant for distinguishing different dynamic and complex systems including engineering and other related applied sciences. Thus, we have aimed at pointing a new frontier by providing a novel alternative mathematical model to facilitate the critical decision-making, management and prediction processes among the related areas in chaotic, dynamic complex systems with intricate and transient states.
ArticleNumber 108694
Author Baleanu, Dumitru
Karabudak, Rana
Karaca, Yeliz
Author_xml – sequence: 1
  givenname: Yeliz
  orcidid: 0000-0001-8725-6719
  surname: Karaca
  fullname: Karaca, Yeliz
  email: yeliz.karaca@ieee.org
  organization: University of Massachusetts Medical School (UMASS), Worcester, MA 01655, USA
– sequence: 2
  givenname: Dumitru
  surname: Baleanu
  fullname: Baleanu, Dumitru
  email: dumitru@cankaya.edu.tr
  organization: Çankaya University, Department of Mathematics, 1406530 Ankara, Turkey
– sequence: 3
  givenname: Rana
  surname: Karabudak
  fullname: Karabudak, Rana
  email: rkbudak@hacettepe.edu.tr
  organization: Hacettepe University, Department of Neurology, Ankara, Turkey
BookMark eNqFkc1u1DAUhS1UJKYtb8DCEusMtpPJDwskVAFF6qiLwtq6sa9bT5M4tZ1RhxWvwZK3YM-b8CQ4TReIBayuZJ_z3aN7jsnR4AYk5AVna854-Wq3vh1cOIS1YEKkp7psiidkxetKZFXBmiOyYs2GZRXb8GfkOIQdY0nJ6xX5cW61xoFuwd-6Pd06jR2FQdN-6qI1HlSEjvYYb5zOWgio6ehRWxXtHundBEO0XyBaN1Dl-rHDexsPtJ8xge5tyH5-z9Kg8Qaptsagx-RIyNG76xQ6fc3b_vh6YDlDt3OABKRXqkM_K399_UbD1F57N43hlDw10AV8_jhPyOf37z6dnWcXlx8-nr29yFSeFzGrUQM00OamMKixbTVHARvBgAFUplWMlYWGHFuBosgByhwFIleN5qYBlp-Qlws3Bb6bMES5c5Mf0kopykpUZc03IqmKRaVS0uDRyNHbHvxBcibnjuROLh3JuSO5dJRsr_-yKRsfLhA92O5_5jeLOZ0a9xa9DMrioFI7HlWU2tl_A34D1E67oQ
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_121213
crossref_primary_10_69882_adba_cem_2024071
crossref_primary_10_51537_chaos_1249532
crossref_primary_10_3390_jmse12071129
crossref_primary_10_1016_j_ecolind_2022_109526
Cites_doi 10.1134/1.1606753
10.1016/j.physa.2018.07.060
10.1016/j.mri.2008.01.016
10.1016/j.physa.2009.07.024
10.1134/1.1591315
10.1016/j.bspc.2019.101739
10.1007/s11416-014-0232-9
10.1016/j.spa.2003.11.002
10.1016/j.neuroimage.2010.06.050
10.1002/sim.2108
10.1016/j.physa.2016.07.027
10.1016/j.csda.2010.06.020
10.1155/2013/262931
10.4103/1673-5374.195274
10.1186/s12874-018-0629-0
10.1016/j.compbiomed.2019.103571
10.1016/j.ifacol.2017.08.2591
10.1016/j.physa.2017.08.155
10.1016/j.csda.2018.08.004
10.1038/s41598-018-23769-6
10.1155/2018/9034647
10.1016/j.neuroimage.2007.03.057
10.3390/e16084497
10.1016/j.future.2020.03.014
10.1016/j.jns.2008.12.023
10.3389/fnins.2018.00603
10.1016/j.neuroimage.2013.06.072
10.1016/j.cnsns.2009.09.018
10.1017/S0033291700027926
10.1016/j.scitotenv.2019.134246
10.1016/j.jvolgeores.2018.09.008
10.1016/j.biosystems.2019.104033
10.1109/ICASSP.2003.1201647
10.1155/2016/5030593
10.1016/S0002-9149(98)01076-5
10.1109/ISBI.2010.5490413
10.1016/S1474-4422(17)30470-2
10.1016/j.knosys.2020.106341
10.1016/j.petrol.2019.106757
10.1016/j.heliyon.2019.e01299
10.1016/j.ijforecast.2015.02.006
10.1016/j.chaos.2019.01.008
10.1016/j.neulet.2005.04.078
10.1016/j.physa.2019.123234
10.1016/j.chaos.2020.109820
10.4236/jbise.2012.54021
10.1016/j.mvr.2018.02.006
10.1016/B978-0-12-388403-9.00011-4
10.1016/j.mbs.2016.02.009
10.1016/j.artint.2009.11.011
10.1023/A:1009901714819
10.1002/mp.12603
10.1016/j.physa.2019.123821
10.1016/B978-0-08-099387-4.00002-8
10.2174/138920209789177575
10.1212/WNL.0000000000000560
10.1016/j.jedc.2020.103855
10.1016/S1474-4422(15)00393-2
10.1212/WNL.33.11.1444
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jun 21, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jun 21, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2022.108694
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Medicine
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_108694
S0950705122003197
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-8edaa9ab3f4fedebbd1e2a520a0aa7fbc0064da3eb2e243aa63e2ee1c9d1f9a03
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795156400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:43:36 EST 2025
Sat Nov 29 07:07:17 EST 2025
Tue Nov 18 22:26:52 EST 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Forward–Backward algorithm
Viterbi algorithm
Nonlinear stochastic processes
Computational dynamic complexity analyses
Hidden Markov Model
Multiple Sclerosis’ subgroups
Multifractal analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-8edaa9ab3f4fedebbd1e2a520a0aa7fbc0064da3eb2e243aa63e2ee1c9d1f9a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8725-6719
PQID 2672768152
PQPubID 2035257
ParticipantIDs proquest_journals_2672768152
crossref_primary_10_1016_j_knosys_2022_108694
crossref_citationtrail_10_1016_j_knosys_2022_108694
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108694
PublicationCentury 2000
PublicationDate 2022-06-21
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-21
  day: 21
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Fan, Yang, Bouguila, Chen (b10) 2020; 206
Ranganathan, Nakai, Schonbach (b3) 2018
Lärinczi, Yang (b42) 2019; 120
Ayache (b86) 2002; 86, 581
Tao (b102) 1992
Li, Wang, Luo, Liu, Cai (b94) 2017
Dutta, Ghosh, Chatterjee (b36) 2016; 463
Kisan, Mishra, Rout (b93) 2017; 45
Kalbhor, Austin, Filiol, Josse, Stamp (b15) 2015; 112
Afzal, Al-Dabbagh (b24) 2017; 501
Karaca, Baleanu (b63) 2020
Joosten, Soler-Toscano, Zenil (b110) 2016
Kobelev, Kobelev, Klimontovich (b77) 2003; 48
Reishofer, Studencnik, Koschutnig, Deutschmann, Ahammer, Wood (b34) 2018; 81
(b73) 2017
Zeng, Anitescu (b25) 2014; 233
Barnsley, Saupe, Vrscay (b84) 2002; vol. 132
Xie, Cai, Li, Wu, Zhao, Luo, Liu (b12) 2019; 185
Wang, Wu, Yang (b37) 2016; 321
Cavallari, Kimbrough, Stamile, Umeton, Chitnis, Guttmann (b57) 2018
Jaffard, Seuret, Wendt, Leonarduzzi, Abry (b43) 2019; 4752229
Bechhoefer (b23) 2015; 177
Esteban, Sepulcre, de Miras, Navas, de Mendizábal, Goñi, Villoslada (b58) 2009; 2821
Waxman (b64) 2005
Vehel (b75) 2000
Zhang, Tong, Wang, Li (b60) 2008; 268
Emdadi, Moughari, Meybodi, Eslahchi (b20) 2019; 5
Siddiqi, Gordon, Moore (b103) 2007
Meyer (b85) 1997; vol. 9
Kukacka, Kristoufek (b46) 2020; 113
Iftekharuddin, Zheng, Islam, Ogg (b50) 2009; 2071
Cohen (b79) 1999
Karaca, Cattani, Karabudak (b55) 2018
Bricq, Collet, Armspach (b29) 2008
Karaca, Moonis, Zhang, Gezgez (b111) 2019; 45
Seely, Newman, Herry (b49) 2014; 168
Karaca, Cattani (b53) 2017; 2504
Véhel (b90) 1996
Liu (b9) 2018; 503
West (b69) 2012
Lassmann (b66) 2018; 83
Ayache, Véhel (b87) 1999
(b74) 2019
Kobelev, Kobelev, Romanov (b76) 2003; 48
Jaffard (b81) 1989; 3081
Trujillo-Castrillón, Valdés-González, Arámbula-Mendoza, Santacoloma-Salguero (b7) 2018; 364
Hou, Zhu, Chen, Wang, Liu (b44) 2020; 187
Bunke, Caelli (b101) 2001
Jiao, Wang, Li, Feng, Hou (b40) 2020; 540
Esteban, Sepulcre, de Mendizábal, Goňi, Navas, de Miras, Villoslada (b59) 2007; 363
Nicolis, Ramirez-Cobo, Vidakovic (b91) 2011; 55
Cui, Chen (b96) 2010
Baravalle, Thomsen, Delrieux, Lu, Gómez, Stośić, Stośić (b33) 2017; 4412
J.L. Véhel, P. Legrand, Bayesian multifractal signal denoising, in: Proceedings of the IEEE International Conference on Accoustics, Speech, and Signal Processing, 2003, pp. 177–180.
Kurtzke (b71) 1983; 33
Jurafsky, Martin (b98) 2018
Popov, Ellis-Robinson, Humphris (b14) 2019; 19
Dutta, Ghosh, Chatterjee (b48) 2018; 491
Karaca, Cattani, Moonis, Bayrak (b31) 2018
Bullmore, Brammer, Harvey, Persaud, Murray, Ron (b107) 1994; 24
Chivers, Sleightholme (b105) 2015
Franzese, Iuliano (b95) 2019
Xia, Tang (b5) 2019; 132
Kaplan, Biggin (b6) 2012
Hawkins (b16) 2016; 275
Lavicka, Kracik (b45) 2020; 545
Mäkikallio, Hober, Kober, Torp-Pedersen, Peng, Goldberger, Huikuri (b38) 1999; 836
Tseng, Kawashima, Kobayashi, Takeuchi, Nakamura (b21) 2020; 698
Karaca, Cattani (b88) 2018
Braverman, Tambasco (b41) 2013
Gerasimova (b39) 2014
Mamon, Duan (b8) 2010; 159
Arora, Barak (b104) 2009
Seifi, Rahatabad, Einalou (b56) 2019; 54
Karaca, Zhang, Cattani, Ayan (b68) 2017
Karaca (b100) 2012
Karaca, Moonis, Zhang (b54) 2019
Sun, Chen, Chen (b78) 2009; 38821
King, Brown, Hwang, Jeon, George (b47) 2010; 532
Ha, Yoon, Lee, Shin, Lee, Kim, Ha, Kim, Kwon (b108) 2005; 384
Hiroyasu, Kiko, Izumi (b109) 2000; 77
Filippi, Rocca, Ciccarelli, De Stefano, Evangelou, Kappos, Gasperini (b67) 2016; 153
Quinn, Vidaurre, Abeysuriya, Becker, Nobre, Woolrich (b18) 2018; 12
Lutton, Grenier, Vehel (b92) 2005
Mohamadkhanloo, Mehrabi, Sohrabi (b61) 2012; 504
Awad, Khanna (b1) 2015
Lublin, Reingold, Cohen, Cutter, Sorensen, Thompson, Bebo (b65) 2014; 833
Yang (b30) 2017
Hallinan (b4) 2012
Brand, Oliver, Pentland (b2) 1997
Karaca, Moonis, Baleanu (b32) 2020; 136
Alpaydin (b99) 2010
Yotter, Thompson, Nenadic, Gaser (b106) 2010
Chadza, Kyriakopoulos, Lambotharan (b97) 2020
Lai, Twine, O’brien, Guo, Bauer (b13) 2018
Dash, Kolekar, Jha (b17) 2020; 116
F. Forbes, S. Doyle, D. Garcia-Lorenzo, C. Barillot, M. Dojat, A weighted multi-sequence markov model for brain lesion segmentation, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, March, pp. 225–232.
Şen (b72) 2018; 55 Suppl 1
Goodwin (b62) 2016; 1112
Yoon (b19) 2009; 106
Popovic, Radunovic, Badnjar, Popovic (b35) 2018; 118
Pantoni, Marzi, Poggesi, Giorgio, De Stefano, Mascalchi, Pantoni, Marzi, Poggesi, Giorgio, De Stefano, Mascalchi, Diciotti (b51) 2019; 24
Bricq, Collet, Armspach (b26) 2008
Michael (b80) 1988
Samaee, Kobravi (b22) 2020; 57
Ayache, Vehel (b83) 2000; 31
Altman, Petkau (b28) 2005; 2415
Goňi, Sporns, Cheng, Aznárez-Sanado, Wang, Josa, Avena-Koenigsberger (b52) 2013; 83
Thompson, Banwell, Barkhof, Carroll, Coetzee, Comi, Fujihara (b70) 2018; 172
Ayache, Véhel (b82) 2004; 1111
Yu (b11) 2010; 174
Siddiqi (10.1016/j.knosys.2022.108694_b103) 2007
Franzese (10.1016/j.knosys.2022.108694_b95) 2019
Samaee (10.1016/j.knosys.2022.108694_b22) 2020; 57
West (10.1016/j.knosys.2022.108694_b69) 2012
Xie (10.1016/j.knosys.2022.108694_b12) 2019; 185
Yu (10.1016/j.knosys.2022.108694_b11) 2010; 174
Bricq (10.1016/j.knosys.2022.108694_b26) 2008
Mäkikallio (10.1016/j.knosys.2022.108694_b38) 1999; 836
Kukacka (10.1016/j.knosys.2022.108694_b46) 2020; 113
King (10.1016/j.knosys.2022.108694_b47) 2010; 532
Kaplan (10.1016/j.knosys.2022.108694_b6) 2012
10.1016/j.knosys.2022.108694_b89
Tao (10.1016/j.knosys.2022.108694_b102) 1992
Waxman (10.1016/j.knosys.2022.108694_b64) 2005
Barnsley (10.1016/j.knosys.2022.108694_b84) 2002; vol. 132
Ha (10.1016/j.knosys.2022.108694_b108) 2005; 384
Baravalle (10.1016/j.knosys.2022.108694_b33) 2017; 4412
Cavallari (10.1016/j.knosys.2022.108694_b57) 2018
Popov (10.1016/j.knosys.2022.108694_b14) 2019; 19
Lavicka (10.1016/j.knosys.2022.108694_b45) 2020; 545
Ayache (10.1016/j.knosys.2022.108694_b83) 2000; 31
Bricq (10.1016/j.knosys.2022.108694_b29) 2008
Mamon (10.1016/j.knosys.2022.108694_b8) 2010; 159
Wang (10.1016/j.knosys.2022.108694_b37) 2016; 321
Ranganathan (10.1016/j.knosys.2022.108694_b3) 2018
Véhel (10.1016/j.knosys.2022.108694_b90) 1996
Altman (10.1016/j.knosys.2022.108694_b28) 2005; 2415
Kobelev (10.1016/j.knosys.2022.108694_b77) 2003; 48
Awad (10.1016/j.knosys.2022.108694_b1) 2015
Brand (10.1016/j.knosys.2022.108694_b2) 1997
Fan (10.1016/j.knosys.2022.108694_b10) 2020; 206
Zeng (10.1016/j.knosys.2022.108694_b25) 2014; 233
Jurafsky (10.1016/j.knosys.2022.108694_b98) 2018
Esteban (10.1016/j.knosys.2022.108694_b58) 2009; 2821
Popovic (10.1016/j.knosys.2022.108694_b35) 2018; 118
Karaca (10.1016/j.knosys.2022.108694_b63) 2020
Ayache (10.1016/j.knosys.2022.108694_b86) 2002; 86, 581
Yoon (10.1016/j.knosys.2022.108694_b19) 2009; 106
Hawkins (10.1016/j.knosys.2022.108694_b16) 2016; 275
Lai (10.1016/j.knosys.2022.108694_b13) 2018
Chadza (10.1016/j.knosys.2022.108694_b97) 2020
Kobelev (10.1016/j.knosys.2022.108694_b76) 2003; 48
Lutton (10.1016/j.knosys.2022.108694_b92) 2005
Vehel (10.1016/j.knosys.2022.108694_b75) 2000
Cohen (10.1016/j.knosys.2022.108694_b79) 1999
(10.1016/j.knosys.2022.108694_b73) 2017
Hallinan (10.1016/j.knosys.2022.108694_b4) 2012
Karaca (10.1016/j.knosys.2022.108694_b32) 2020; 136
Goodwin (10.1016/j.knosys.2022.108694_b62) 2016; 1112
Yang (10.1016/j.knosys.2022.108694_b30) 2017
Braverman (10.1016/j.knosys.2022.108694_b41) 2013
Thompson (10.1016/j.knosys.2022.108694_b70) 2018; 172
Joosten (10.1016/j.knosys.2022.108694_b110) 2016
Lassmann (10.1016/j.knosys.2022.108694_b66) 2018; 83
Bunke (10.1016/j.knosys.2022.108694_b101) 2001
Xia (10.1016/j.knosys.2022.108694_b5) 2019; 132
Li (10.1016/j.knosys.2022.108694_b94) 2017
Kurtzke (10.1016/j.knosys.2022.108694_b71) 1983; 33
Zhang (10.1016/j.knosys.2022.108694_b60) 2008; 268
Bullmore (10.1016/j.knosys.2022.108694_b107) 1994; 24
Seely (10.1016/j.knosys.2022.108694_b49) 2014; 168
Ayache (10.1016/j.knosys.2022.108694_b87) 1999
Arora (10.1016/j.knosys.2022.108694_b104) 2009
Karaca (10.1016/j.knosys.2022.108694_b88) 2018
Karaca (10.1016/j.knosys.2022.108694_b68) 2017
Karaca (10.1016/j.knosys.2022.108694_b55) 2018
Kalbhor (10.1016/j.knosys.2022.108694_b15) 2015; 112
Jiao (10.1016/j.knosys.2022.108694_b40) 2020; 540
Karaca (10.1016/j.knosys.2022.108694_b100) 2012
Alpaydin (10.1016/j.knosys.2022.108694_b99) 2010
Bechhoefer (10.1016/j.knosys.2022.108694_b23) 2015; 177
Afzal (10.1016/j.knosys.2022.108694_b24) 2017; 501
Pantoni (10.1016/j.knosys.2022.108694_b51) 2019; 24
Ayache (10.1016/j.knosys.2022.108694_b82) 2004; 1111
Nicolis (10.1016/j.knosys.2022.108694_b91) 2011; 55
Lublin (10.1016/j.knosys.2022.108694_b65) 2014; 833
Jaffard (10.1016/j.knosys.2022.108694_b81) 1989; 3081
Karaca (10.1016/j.knosys.2022.108694_b111) 2019; 45
Meyer (10.1016/j.knosys.2022.108694_b85) 1997; vol. 9
Dash (10.1016/j.knosys.2022.108694_b17) 2020; 116
Yotter (10.1016/j.knosys.2022.108694_b106) 2010
Tseng (10.1016/j.knosys.2022.108694_b21) 2020; 698
Hiroyasu (10.1016/j.knosys.2022.108694_b109) 2000; 77
Reishofer (10.1016/j.knosys.2022.108694_b34) 2018; 81
Hou (10.1016/j.knosys.2022.108694_b44) 2020; 187
Şen (10.1016/j.knosys.2022.108694_b72) 2018; 55 Suppl 1
Cui (10.1016/j.knosys.2022.108694_b96) 2010
Sun (10.1016/j.knosys.2022.108694_b78) 2009; 38821
(10.1016/j.knosys.2022.108694_b74) 2019
Seifi (10.1016/j.knosys.2022.108694_b56) 2019; 54
Trujillo-Castrillón (10.1016/j.knosys.2022.108694_b7) 2018; 364
Michael (10.1016/j.knosys.2022.108694_b80) 1988
Mohamadkhanloo (10.1016/j.knosys.2022.108694_b61) 2012; 504
Quinn (10.1016/j.knosys.2022.108694_b18) 2018; 12
Dutta (10.1016/j.knosys.2022.108694_b36) 2016; 463
Chivers (10.1016/j.knosys.2022.108694_b105) 2015
Gerasimova (10.1016/j.knosys.2022.108694_b39) 2014
Dutta (10.1016/j.knosys.2022.108694_b48) 2018; 491
Goňi (10.1016/j.knosys.2022.108694_b52) 2013; 83
Karaca (10.1016/j.knosys.2022.108694_b53) 2017; 2504
Liu (10.1016/j.knosys.2022.108694_b9) 2018; 503
Karaca (10.1016/j.knosys.2022.108694_b54) 2019
10.1016/j.knosys.2022.108694_b27
Kisan (10.1016/j.knosys.2022.108694_b93) 2017; 45
Iftekharuddin (10.1016/j.knosys.2022.108694_b50) 2009; 2071
Esteban (10.1016/j.knosys.2022.108694_b59) 2007; 363
Emdadi (10.1016/j.knosys.2022.108694_b20) 2019; 5
Karaca (10.1016/j.knosys.2022.108694_b31) 2018
Lärinczi (10.1016/j.knosys.2022.108694_b42) 2019; 120
Jaffard (10.1016/j.knosys.2022.108694_b43) 2019; 4752229
Filippi (10.1016/j.knosys.2022.108694_b67) 2016; 153
References_xml – start-page: 359
  year: 2015
  end-page: 364
  ident: b105
  article-title: An introduction to algorithms and the big O notation
  publication-title: Introduction to Programming with Fortran
– volume: 55 Suppl 1
  start-page: S80
  year: 2018
  ident: b72
  article-title: Neurostatus and EDSS calculation with cases
  publication-title: Arch. Neuropsychiatry
– volume: 48
  start-page: 285
  year: 2003
  end-page: 289
  ident: b77
  article-title: Statistical physics of dynamic systems with variable memory
  publication-title: Dokl. Phys.
– year: 2010
  ident: b99
  article-title: Introduction to Machine Learning
– year: 2012
  ident: b69
  article-title: Complex Worlds: Uncertain, Unequal and Unfair
– volume: 836
  start-page: 836
  year: 1999
  end-page: 839
  ident: b38
  article-title: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction
  publication-title: Am. J. Cardiol.
– start-page: 155
  year: 2001
  end-page: 182
  ident: b101
  article-title: Hidden Markov models: applications in computer vision
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence, Vol. 15
– volume: 321
  start-page: 1
  year: 2016
  end-page: 9
  ident: b37
  article-title: Forecasting crude oil market volatility: A Markov switching multifractal volatility approach
  publication-title: Int. J. Forecast.
– volume: 833
  start-page: 278
  year: 2014
  end-page: 286
  ident: b65
  article-title: Defining the clinical course of multiple sclerosis the 2013 revisions
  publication-title: Neurology
– volume: 3081
  start-page: 79
  year: 1989
  end-page: 81
  ident: b81
  article-title: Exposants de Hölder en des points donnés et coefficients d’ondelettes
  publication-title: C. R. Acad. Sci. Paris
– start-page: 121
  year: 2018
  end-page: 136
  ident: b55
  article-title: ANN classification of MS subgroups with diffusion limited aggregation
  publication-title: International Conference on Computational Science and its Applications
– volume: 185
  year: 2019
  ident: b12
  article-title: DNMHMM: An approach to identify the differential nucleosome regions in multiple cell types based on a hidden Markov model
  publication-title: Biosystems
– volume: 2415
  start-page: 2335
  year: 2005
  end-page: 2344
  ident: b28
  article-title: Application of hidden Markov models to multiple sclerosis lesion count data
  publication-title: Stat. Med.
– year: 2013
  ident: b41
  article-title: Scale-specific multifractal medical image analysis
  publication-title: Comput. Math. Methods Med.
– volume: 113
  year: 2020
  ident: b46
  article-title: Do complex’financial models really lead to complex dynamics? Agent-based models and multifractality
  publication-title: J. Econom. Dynam. Control
– volume: 503
  start-page: 1007
  year: 2018
  end-page: 1019
  ident: b9
  article-title: Hidden Markov model analysis of extreme behaviors of foreign exchange rates
  publication-title: Physica A
– volume: 55
  start-page: 738
  year: 2011
  end-page: 751
  ident: b91
  article-title: 2D waveletbased spectra with applications
  publication-title: Comput. Statist. Data Anal.
– start-page: 257
  year: 2019
  end-page: 269
  ident: b54
  article-title: Multifractal analysis with L2 norm denoising technique: Modelling of MS subgroups classification
  publication-title: International Conference on Computational Science and its Applications
– year: 2009
  ident: b104
  article-title: Computational Complexity: A Modern Approach
– start-page: 274
  year: 2005
  end-page: 283
  ident: b92
  article-title: An interactive EA for multifractal bayesian denoising
  publication-title: EvoWorkshops 2005: Applications of Evolutionary Computing
– year: 2018
  ident: b98
  article-title: Chapter 9: Hidden Markov models
  publication-title: Speech and Language Processing
– year: 2018
  ident: b88
  article-title: Computational Methods for Data Analysis
– volume: 81
  start-page: 5431
  year: 2018
  ident: b34
  article-title: Age is reflected in the fractal dimensionality of MRI diffusion based tractography
  publication-title: Sci. Rep.
– volume: 77
  start-page: 3
  year: 2000
  end-page: 793
  ident: b109
  article-title: Computational complexity of fractal sets
  publication-title: Real Anal. Exchange
– start-page: 81
  year: 2015
  end-page: 104
  ident: b1
  article-title: Efficient learning machines: theories, concepts, and applications for engineers and system designers
  publication-title: Apress
– volume: 532
  start-page: 471
  year: 2010
  end-page: 479
  ident: b47
  article-title: Alzheimer’s disease neuroimaging initiative. Fractal dimension analysis of the cortical ribbon in mild alzheimer’s disease
  publication-title: Neuroimage
– volume: 698
  year: 2020
  ident: b21
  article-title: Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors
  publication-title: Sci. Total Environ.
– volume: 364
  start-page: 107
  year: 2018
  end-page: 120
  ident: b7
  article-title: Initial processing of volcanic seismic signals using hidden Markov models: Nevado del Huila, Colombia
  publication-title: J. Volcanol. Geotherm. Res.
– start-page: 370
  year: 2018
  end-page: 371
  ident: b57
  article-title: Fractal analysis of retinal vascular morphology in multiple sclerosis
  publication-title: Multiple Sclerosis Journal, Vol. 24
– volume: 187
  year: 2020
  ident: b44
  article-title: Investigation on pore structure and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements
  publication-title: J. Pet. Sci. Eng.
– volume: vol. 9
  year: 1997
  ident: b85
  publication-title: Wavelets, Vibrations and Scalings
– start-page: 263
  year: 2012
  end-page: 283
  ident: b6
  article-title: Quantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding
  publication-title: Methods in Cell Biology, Vol. 110
– start-page: 1381
  year: 1992
  end-page: 1387
  ident: b102
  article-title: A generalization of discrete hidden Markov model and of viterbi algorithm
  publication-title: Computer and Information Science, Vol. 25
– year: 2017
  ident: b73
  article-title: Clinical Review Report: Ocrelizumab Ocrevus: Hoffmann-la Roche Limited: Indication: Treatment of Adult Patients with Relapsing-Remitting Multiple Sclerosis RRMS with Active Disease Defined By Clinical and Imaging Features [Internet]
– start-page: 27
  year: 2012
  end-page: 79
  ident: b4
  article-title: Data mining for microbiologists
  publication-title: Methods in Microbiology, Vol. 39
– volume: 504
  start-page: 162
  year: 2012
  ident: b61
  article-title: Automatic determination of MS lesion subtypes based on fractal analysis in brain MR images
  publication-title: J. Biomed. Sci. Eng.
– start-page: 994
  year: 1997
  end-page: 999
  ident: b2
  article-title: Coupled hidden Markov models for complex action recognition
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 159
  start-page: 2521
  year: 2010
  end-page: 2528
  ident: b8
  article-title: A self-tuning model for inflation rate dynamics
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 31
  start-page: 7
  year: 2000
  end-page: 18
  ident: b83
  article-title: The generalized multifractional Brownian motion
  publication-title: Stat. Inference Stoch. Process.
– start-page: 1
  year: 1996
  end-page: 3
  ident: b90
  article-title: Numerical computation of the large deviation multifractal spectrum
  publication-title: CFIC’96-Chaos and Fractals in Chemical Engineering
– year: 2018
  ident: b3
  article-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics
– start-page: 492
  year: 2007
  end-page: 499
  ident: b103
  article-title: Fast state discovery for HMM model selection and learning
  publication-title: Artificial Intelligence and Statistics
– start-page: 1
  year: 2008
  end-page: 9
  ident: b26
  article-title: MS lesion segmentation based on hidden Markov chains
  publication-title: Grand Challenge Work.: Mult. Scler. Lesion Segm. Challenge
– start-page: 35
  year: 2017
  end-page: 74
  ident: b30
  article-title: Chapter 3 - development of early warning models
  publication-title: Early Warning for Infectious Disease Outbreak: Theory and Practice
– volume: 174
  start-page: 215
  year: 2010
  end-page: 243
  ident: b11
  article-title: Hidden semi-Markov models
  publication-title: Artificial Intelligence
– volume: 4752229
  year: 2019
  ident: b43
  article-title: Multifractal formalisms for multivariate analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 363
  start-page: 543
  year: 2007
  end-page: 549
  ident: b59
  article-title: Fractal dimension and white matter changes in multiple sclerosis
  publication-title: Neuroimage
– volume: 206
  year: 2020
  ident: b10
  article-title: Sequentially spherical data modeling with hidden Markov models and its application to fMRI data analysis
  publication-title: Knowl.-Based Syst.
– volume: 116
  year: 2020
  ident: b17
  article-title: Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and hidden Markov model
  publication-title: Comput. Biol. Med.
– volume: 2071
  start-page: 23
  year: 2009
  end-page: 41
  ident: b50
  article-title: Fractal-based brain tumor detection in multimodal MRI
  publication-title: Appl. Math. Comput.
– volume: 118
  start-page: 36
  year: 2018
  end-page: 43
  ident: b35
  article-title: Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes
  publication-title: Microvasc. Res.
– start-page: 169
  year: 2010
  end-page: 176
  ident: b106
  article-title: Estimating local surface complexity maps using spherical harmonic reconstructions
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 275
  start-page: 18
  year: 2016
  end-page: 24
  ident: b16
  article-title: Markov process models of the dynamics of HIV reservoirs
  publication-title: Math. Biosci.
– volume: 2821
  start-page: 67
  year: 2009
  end-page: 71
  ident: b58
  article-title: Fractal dimension analysis of grey matter in multiple sclerosis
  publication-title: J. Neurol. Sci.
– start-page: 753
  year: 2019
  end-page: 762
  ident: b95
  article-title: Hidden markov models
  publication-title: Encyclopedia of Bioinformatics and Computational Biology
– year: 2016
  ident: b110
  article-title: Fractal dimension versus process complexity
  publication-title: Adv. Math. Phys.
– volume: 86, 581
  start-page: 27
  year: 2002
  end-page: 30
  ident: b86
  article-title: The generalized multifractional field: a nice tool for the study of the generalized multifractional Brownian motion
  publication-title: J. Fourier Anal. Appl.
– volume: 24
  start-page: 771
  year: 1994
  end-page: 781
  ident: b107
  article-title: Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients
  publication-title: Psychol. Med.
– volume: 12
  start-page: 603
  year: 2018
  ident: b18
  article-title: Task-evoked dynamic network analysis through hidden Markov modeling
  publication-title: Front. Neurosci.
– volume: 233
  start-page: 507
  year: 2014
  end-page: 521
  ident: b25
  article-title: Sequential Monte Carlo sampling in hidden Markov models of nonlinear dynamical systems
  publication-title: Appl. Math. Comput.
– volume: 1111
  start-page: 119
  year: 2004
  end-page: 156
  ident: b82
  article-title: On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion
  publication-title: Stochastic Process. Appl.
– start-page: 17
  year: 1999
  end-page: 32
  ident: b87
  article-title: Generalized multifractional Brownian motion: definition and preliminary results
  publication-title: Fractals
– volume: 83
  year: 2018
  ident: b66
  article-title: Multiple sclerosis pathology
  publication-title: Cold Spring Harbor Perspect. Med.
– year: 2000
  ident: b75
  article-title: Fraclab
– year: 2012
  ident: b100
  article-title: Constituting an Optimum Mathematical Model for the Diagnosis of Multiple Sclerosis
– volume: 1112
  start-page: 1900
  year: 2016
  ident: b62
  article-title: Multiple sclerosis: integration of modeling with biology, clinical and imaging measures to provide better monitoring of disease progression and prediction of outcome
  publication-title: Neural Regener. Res.
– volume: 38821
  start-page: 4586
  year: 2009
  end-page: 4592
  ident: b78
  article-title: Variable-order fractional differential operators in anomalous diffusion modeling
  publication-title: Physica A
– volume: 177
  year: 2015
  ident: b23
  article-title: Hidden Markov models for stochastic thermodynamics
  publication-title: New J. Phys.
– volume: 384
  start-page: 172
  year: 2005
  end-page: 176
  ident: b108
  article-title: Fractal dimension of cerebral cortical surface in schizophrenia and obsessivecompulsive disorder
  publication-title: Neurosci. Lett.
– volume: 463
  start-page: 188
  year: 2016
  end-page: 201
  ident: b36
  article-title: Multifractal detrended cross correlation analysis of foreign exchange and SENSEX fluctuation in Indian perspective
  publication-title: Physica A
– volume: 540
  year: 2020
  ident: b40
  article-title: The chaotic characteristics detection based on multifractal detrended fluctuation analysis of the elderly 12-lead ECG signals
  publication-title: Physica A
– volume: 33
  start-page: 1444
  year: 1983
  end-page: 1452
  ident: b71
  article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale EDSS
  publication-title: Neurology
– volume: 136
  year: 2020
  ident: b32
  article-title: Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification
  publication-title: Chaos Solitons Fractals
– start-page: 733
  year: 2008
  end-page: 736
  ident: b29
  article-title: Markovian segmentation of 3D brain MRI to detect multiple sclerosis lesions
  publication-title: 2008 15th IEEE International Conference on Image Processing, San Diego, CA
– volume: 45
  start-page: 250
  year: 2019
  end-page: 261
  ident: b111
  article-title: Mobile cloud computing based stroke healthcare system
  publication-title: Int. J. Inf. Manage.
– volume: 112
  start-page: 103
  year: 2015
  end-page: 118
  ident: b15
  article-title: Dueling hidden Markov models for virus analysis
  publication-title: J. Comput. Virol. Hack. Tech.
– year: 1999
  ident: b79
  article-title: From self-similarity to local self-similarity: the estimation problem
  publication-title: Fractals
– volume: 2504
  year: 2017
  ident: b53
  article-title: Clustering multiple sclerosis subgroups with multifractal methods and self-organizing map algorithm
  publication-title: Fractals
– volume: 83
  start-page: 646
  year: 2013
  end-page: 657
  ident: b52
  article-title: Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility
  publication-title: Neuroimage
– volume: 153
  start-page: 292
  year: 2016
  end-page: 303
  ident: b67
  article-title: MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines
  publication-title: Lancet Neurol.
– volume: 545
  year: 2020
  ident: b45
  article-title: Fluctuation analysis of electric power loads in Europe: correlation multifractality vs. distribution function multifractality
  publication-title: Physica A
– volume: 168
  start-page: 4497
  year: 2014
  end-page: 4520
  ident: b49
  article-title: Fractal structure and entropy production within the central nervous system
  publication-title: Entropy
– volume: 19
  start-page: 11
  year: 2019
  ident: b14
  article-title: Modelling reassurances of clinicians with hidden Markov models
  publication-title: BMC Med. Res. Methodol.
– volume: 54
  start-page: 115
  year: 2019
  end-page: 120
  ident: b56
  article-title: Detection of different levels of multiple sclerosis by assessing nonlinear characteristics of posture
  publication-title: Int. Clin. Neurosci. J.
– reference: F. Forbes, S. Doyle, D. Garcia-Lorenzo, C. Barillot, M. Dojat, A weighted multi-sequence markov model for brain lesion segmentation, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, March, pp. 225–232.
– year: 2005
  ident: b64
  article-title: Multiple Sclerosis as a Neuronal Disease
– year: 1988
  ident: b80
  article-title: Fractals Everywhere
– start-page: 438
  year: 2014
  ident: b39
  article-title: A wavelet-based method for multifractal analysis of medical signals: Application to dynamic infrared thermograms of breast cancer
  publication-title: Nonlinear Dynamics of Electronic Systems. NDES 2014. Communications in Computer and Information Science
– volume: 106
  start-page: 402
  year: 2009
  end-page: 415
  ident: b19
  article-title: Hidden Markov models and their applications in biological sequence analysis
  publication-title: Curr. Genom.
– start-page: 12
  year: 2017
  ident: b94
  article-title: Wavelet denoising of vehicle platform vibration signal based on threshold neural network
  publication-title: Shock Vib.
– volume: 45
  start-page: 30
  year: 2017
  ident: b93
  article-title: Fractal dimension in medical imaging: A review
  publication-title: Int. Res. J. Eng. Technol.
– volume: 132
  start-page: 190
  year: 2019
  end-page: 211
  ident: b5
  article-title: Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data
  publication-title: Comput. Statist. Data Anal.
– start-page: 272
  year: 2018
  ident: b13
  article-title: Artificial intelligence and machine learning in bioinformatics
  publication-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Vol. 55
– year: 2018
  ident: b31
  article-title: Stroke subtype clustering by multifractal Bayesian denoising with fuzzy C means and K-means algorithms
  publication-title: Complexity
– start-page: 205
  year: 2010
  end-page: 212
  ident: b96
  article-title: An improved hidden Markov model for literature metadata extraction
  publication-title: International Conference on Intelligent Computing
– volume: 57
  year: 2020
  ident: b22
  article-title: Predicting the occurrence of wrist tremor based on electromyography using a hidden Markov model and entropy based learning algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 48
  start-page: 409
  year: 2003
  end-page: 413
  ident: b76
  article-title: Landau-Lifshitz equations for magnetic systems with constant and variable memory
  publication-title: Dokl. Phys.
– volume: 5
  year: 2019
  ident: b20
  article-title: A novel algorithm for parameter estimation of hidden Markov model inspired by ant colony optimization
  publication-title: Heliyon
– volume: 120
  start-page: 83
  year: 2019
  end-page: 94
  ident: b42
  article-title: Multifractal properties of sample paths of ground state-transformed jump processes
  publication-title: Chaos Solitons Fractals
– volume: 501
  start-page: 14770
  year: 2017
  end-page: 14775
  ident: b24
  article-title: Forecasting in industrial process control: A hidden Markov model approach
  publication-title: IFAC-PapersOnLine
– volume: 172
  start-page: 162
  year: 2018
  end-page: 173
  ident: b70
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol.
– year: 2019
  ident: b74
  article-title: The Mathworks, MATLAB R 2019b
– volume: 4412
  start-page: 6404
  year: 2017
  end-page: 6412
  ident: b33
  article-title: Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography
  publication-title: Med. Phys.
– volume: 491
  start-page: 188
  year: 2018
  end-page: 198
  ident: b48
  article-title: Multifractal detrended cross correlation analysis of-an in depth study
  publication-title: Physica A
– reference: J.L. Véhel, P. Legrand, Bayesian multifractal signal denoising, in: Proceedings of the IEEE International Conference on Accoustics, Speech, and Signal Processing, 2003, pp. 177–180.
– year: 2020
  ident: b97
  article-title: Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks
  publication-title: Future Gener. Comput. Syst.
– volume: vol. 132
  start-page: 197
  year: 2002
  end-page: 209
  ident: b84
  publication-title: Signal Enhancement Based on Holder Regularity Analysis
– volume: 268
  start-page: 1160
  year: 2008
  end-page: 1166
  ident: b60
  article-title: Texture analysis of multiple sclerosis: a comparative study
  publication-title: Magn. Reson. Imaging
– start-page: 36
  year: 2017
  end-page: 43
  ident: b68
  article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels
  publication-title: CNS & Neurological Disorders-Drug Targets Formerly Current Drug Targets-CNS & Neurological Disorders, Vol. 161
– volume: 24
  year: 2019
  ident: b51
  article-title: Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment
  publication-title: NeuroImage: Clinical
– start-page: 426
  year: 2020
  end-page: 441
  ident: b63
  article-title: Multifractional Gaussian process based on self-similarity modelling for MS subgroups’ clustering with fuzzy C-means
  publication-title: International Conference on Computational Science and its Applications
– volume: 48
  start-page: 409
  year: 2003
  ident: 10.1016/j.knosys.2022.108694_b76
  article-title: Landau-Lifshitz equations for magnetic systems with constant and variable memory
  publication-title: Dokl. Phys.
  doi: 10.1134/1.1606753
– volume: 503
  start-page: 1007
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b9
  article-title: Hidden Markov model analysis of extreme behaviors of foreign exchange rates
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.07.060
– volume: 268
  start-page: 1160
  year: 2008
  ident: 10.1016/j.knosys.2022.108694_b60
  article-title: Texture analysis of multiple sclerosis: a comparative study
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.01.016
– start-page: 733
  year: 2008
  ident: 10.1016/j.knosys.2022.108694_b29
  article-title: Markovian segmentation of 3D brain MRI to detect multiple sclerosis lesions
– volume: 38821
  start-page: 4586
  year: 2009
  ident: 10.1016/j.knosys.2022.108694_b78
  article-title: Variable-order fractional differential operators in anomalous diffusion modeling
  publication-title: Physica A
  doi: 10.1016/j.physa.2009.07.024
– volume: 48
  start-page: 285
  year: 2003
  ident: 10.1016/j.knosys.2022.108694_b77
  article-title: Statistical physics of dynamic systems with variable memory
  publication-title: Dokl. Phys.
  doi: 10.1134/1.1591315
– year: 2000
  ident: 10.1016/j.knosys.2022.108694_b75
– start-page: 36
  year: 2017
  ident: 10.1016/j.knosys.2022.108694_b68
  article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels
– volume: 57
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b22
  article-title: Predicting the occurrence of wrist tremor based on electromyography using a hidden Markov model and entropy based learning algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101739
– volume: 112
  start-page: 103
  year: 2015
  ident: 10.1016/j.knosys.2022.108694_b15
  article-title: Dueling hidden Markov models for virus analysis
  publication-title: J. Comput. Virol. Hack. Tech.
  doi: 10.1007/s11416-014-0232-9
– volume: 1111
  start-page: 119
  year: 2004
  ident: 10.1016/j.knosys.2022.108694_b82
  article-title: On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2003.11.002
– volume: 233
  start-page: 507
  year: 2014
  ident: 10.1016/j.knosys.2022.108694_b25
  article-title: Sequential Monte Carlo sampling in hidden Markov models of nonlinear dynamical systems
  publication-title: Appl. Math. Comput.
– volume: 532
  start-page: 471
  year: 2010
  ident: 10.1016/j.knosys.2022.108694_b47
  article-title: Alzheimer’s disease neuroimaging initiative. Fractal dimension analysis of the cortical ribbon in mild alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.050
– volume: 2415
  start-page: 2335
  year: 2005
  ident: 10.1016/j.knosys.2022.108694_b28
  article-title: Application of hidden Markov models to multiple sclerosis lesion count data
  publication-title: Stat. Med.
  doi: 10.1002/sim.2108
– volume: 463
  start-page: 188
  year: 2016
  ident: 10.1016/j.knosys.2022.108694_b36
  article-title: Multifractal detrended cross correlation analysis of foreign exchange and SENSEX fluctuation in Indian perspective
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.07.027
– volume: 55
  start-page: 738
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2022.108694_b91
  article-title: 2D waveletbased spectra with applications
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2010.06.020
– year: 2013
  ident: 10.1016/j.knosys.2022.108694_b41
  article-title: Scale-specific multifractal medical image analysis
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/262931
– start-page: 81
  year: 2015
  ident: 10.1016/j.knosys.2022.108694_b1
  article-title: Efficient learning machines: theories, concepts, and applications for engineers and system designers
  publication-title: Apress
– volume: 2504
  year: 2017
  ident: 10.1016/j.knosys.2022.108694_b53
  article-title: Clustering multiple sclerosis subgroups with multifractal methods and self-organizing map algorithm
  publication-title: Fractals
– volume: 86, 581
  start-page: 27
  issue: 602
  year: 2002
  ident: 10.1016/j.knosys.2022.108694_b86
  article-title: The generalized multifractional field: a nice tool for the study of the generalized multifractional Brownian motion
  publication-title: J. Fourier Anal. Appl.
– volume: 1112
  start-page: 1900
  year: 2016
  ident: 10.1016/j.knosys.2022.108694_b62
  article-title: Multiple sclerosis: integration of modeling with biology, clinical and imaging measures to provide better monitoring of disease progression and prediction of outcome
  publication-title: Neural Regener. Res.
  doi: 10.4103/1673-5374.195274
– volume: 19
  start-page: 11
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b14
  article-title: Modelling reassurances of clinicians with hidden Markov models
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-018-0629-0
– volume: 116
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b17
  article-title: Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and hidden Markov model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103571
– volume: 501
  start-page: 14770
  year: 2017
  ident: 10.1016/j.knosys.2022.108694_b24
  article-title: Forecasting in industrial process control: A hidden Markov model approach
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.2591
– volume: 3081
  start-page: 79
  issue: 27
  year: 1989
  ident: 10.1016/j.knosys.2022.108694_b81
  article-title: Exposants de Hölder en des points donnés et coefficients d’ondelettes
  publication-title: C. R. Acad. Sci. Paris
– start-page: 169
  year: 2010
  ident: 10.1016/j.knosys.2022.108694_b106
  article-title: Estimating local surface complexity maps using spherical harmonic reconstructions
– year: 1999
  ident: 10.1016/j.knosys.2022.108694_b79
  article-title: From self-similarity to local self-similarity: the estimation problem
– volume: 491
  start-page: 188
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b48
  article-title: Multifractal detrended cross correlation analysis of-an in depth study
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.08.155
– start-page: 492
  year: 2007
  ident: 10.1016/j.knosys.2022.108694_b103
  article-title: Fast state discovery for HMM model selection and learning
– volume: 132
  start-page: 190
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b5
  article-title: Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2018.08.004
– volume: 81
  start-page: 5431
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b34
  article-title: Age is reflected in the fractal dimensionality of MRI diffusion based tractography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23769-6
– start-page: 257
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b54
  article-title: Multifractal analysis with L2 norm denoising technique: Modelling of MS subgroups classification
– volume: 45
  start-page: 250
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b111
  article-title: Mobile cloud computing based stroke healthcare system
  publication-title: Int. J. Inf. Manage.
– year: 2018
  ident: 10.1016/j.knosys.2022.108694_b31
  article-title: Stroke subtype clustering by multifractal Bayesian denoising with fuzzy C means and K-means algorithms
  publication-title: Complexity
  doi: 10.1155/2018/9034647
– volume: 363
  start-page: 543
  year: 2007
  ident: 10.1016/j.knosys.2022.108694_b59
  article-title: Fractal dimension and white matter changes in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.057
– start-page: 35
  year: 2017
  ident: 10.1016/j.knosys.2022.108694_b30
  article-title: Chapter 3 - development of early warning models
– volume: 168
  start-page: 4497
  year: 2014
  ident: 10.1016/j.knosys.2022.108694_b49
  article-title: Fractal structure and entropy production within the central nervous system
  publication-title: Entropy
  doi: 10.3390/e16084497
– year: 2020
  ident: 10.1016/j.knosys.2022.108694_b97
  article-title: Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.014
– start-page: 1
  year: 2008
  ident: 10.1016/j.knosys.2022.108694_b26
  article-title: MS lesion segmentation based on hidden Markov chains
– volume: 2821
  start-page: 67
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2022.108694_b58
  article-title: Fractal dimension analysis of grey matter in multiple sclerosis
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2008.12.023
– volume: 12
  start-page: 603
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b18
  article-title: Task-evoked dynamic network analysis through hidden Markov modeling
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00603
– volume: 83
  start-page: 646
  year: 2013
  ident: 10.1016/j.knosys.2022.108694_b52
  article-title: Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.06.072
– volume: 159
  start-page: 2521
  year: 2010
  ident: 10.1016/j.knosys.2022.108694_b8
  article-title: A self-tuning model for inflation rate dynamics
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.09.018
– start-page: 1
  year: 1996
  ident: 10.1016/j.knosys.2022.108694_b90
  article-title: Numerical computation of the large deviation multifractal spectrum
– year: 2012
  ident: 10.1016/j.knosys.2022.108694_b69
– start-page: 438
  year: 2014
  ident: 10.1016/j.knosys.2022.108694_b39
  article-title: A wavelet-based method for multifractal analysis of medical signals: Application to dynamic infrared thermograms of breast cancer
– volume: 55 Suppl 1
  start-page: S80
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b72
  article-title: Neurostatus and EDSS calculation with cases
  publication-title: Arch. Neuropsychiatry
– volume: 24
  start-page: 771
  year: 1994
  ident: 10.1016/j.knosys.2022.108694_b107
  article-title: Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291700027926
– start-page: 17
  year: 1999
  ident: 10.1016/j.knosys.2022.108694_b87
  article-title: Generalized multifractional Brownian motion: definition and preliminary results
– volume: 698
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b21
  article-title: Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134246
– year: 2005
  ident: 10.1016/j.knosys.2022.108694_b64
– start-page: 272
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b13
  article-title: Artificial intelligence and machine learning in bioinformatics
– volume: 364
  start-page: 107
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b7
  article-title: Initial processing of volcanic seismic signals using hidden Markov models: Nevado del Huila, Colombia
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2018.09.008
– volume: 185
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b12
  article-title: DNMHMM: An approach to identify the differential nucleosome regions in multiple cell types based on a hidden Markov model
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2019.104033
– start-page: 274
  year: 2005
  ident: 10.1016/j.knosys.2022.108694_b92
  article-title: An interactive EA for multifractal bayesian denoising
– volume: 45
  start-page: 30
  issue: 12
  year: 2017
  ident: 10.1016/j.knosys.2022.108694_b93
  article-title: Fractal dimension in medical imaging: A review
  publication-title: Int. Res. J. Eng. Technol.
– ident: 10.1016/j.knosys.2022.108694_b89
  doi: 10.1109/ICASSP.2003.1201647
– year: 2016
  ident: 10.1016/j.knosys.2022.108694_b110
  article-title: Fractal dimension versus process complexity
  publication-title: Adv. Math. Phys.
  doi: 10.1155/2016/5030593
– year: 2018
  ident: 10.1016/j.knosys.2022.108694_b88
– start-page: 1381
  year: 1992
  ident: 10.1016/j.knosys.2022.108694_b102
  article-title: A generalization of discrete hidden Markov model and of viterbi algorithm
– year: 2018
  ident: 10.1016/j.knosys.2022.108694_b98
  article-title: Chapter 9: Hidden Markov models
– volume: 836
  start-page: 836
  year: 1999
  ident: 10.1016/j.knosys.2022.108694_b38
  article-title: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(98)01076-5
– start-page: 155
  year: 2001
  ident: 10.1016/j.knosys.2022.108694_b101
  article-title: Hidden Markov models: applications in computer vision
– ident: 10.1016/j.knosys.2022.108694_b27
  doi: 10.1109/ISBI.2010.5490413
– start-page: 205
  year: 2010
  ident: 10.1016/j.knosys.2022.108694_b96
  article-title: An improved hidden Markov model for literature metadata extraction
– volume: 172
  start-page: 162
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b70
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30470-2
– volume: 206
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b10
  article-title: Sequentially spherical data modeling with hidden Markov models and its application to fMRI data analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106341
– volume: 83
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b66
  article-title: Multiple sclerosis pathology
  publication-title: Cold Spring Harbor Perspect. Med.
– start-page: 359
  year: 2015
  ident: 10.1016/j.knosys.2022.108694_b105
  article-title: An introduction to algorithms and the big O notation
– year: 1988
  ident: 10.1016/j.knosys.2022.108694_b80
– volume: 187
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b44
  article-title: Investigation on pore structure and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106757
– volume: 5
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b20
  article-title: A novel algorithm for parameter estimation of hidden Markov model inspired by ant colony optimization
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01299
– volume: 321
  start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2022.108694_b37
  article-title: Forecasting crude oil market volatility: A Markov switching multifractal volatility approach
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.02.006
– volume: 2071
  start-page: 23
  year: 2009
  ident: 10.1016/j.knosys.2022.108694_b50
  article-title: Fractal-based brain tumor detection in multimodal MRI
  publication-title: Appl. Math. Comput.
– volume: 177
  year: 2015
  ident: 10.1016/j.knosys.2022.108694_b23
  article-title: Hidden Markov models for stochastic thermodynamics
  publication-title: New J. Phys.
– volume: 120
  start-page: 83
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b42
  article-title: Multifractal properties of sample paths of ground state-transformed jump processes
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.01.008
– volume: 54
  start-page: 115
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b56
  article-title: Detection of different levels of multiple sclerosis by assessing nonlinear characteristics of posture
  publication-title: Int. Clin. Neurosci. J.
– volume: 24
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b51
  article-title: Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment
  publication-title: NeuroImage: Clinical
– volume: 4752229
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b43
  article-title: Multifractal formalisms for multivariate analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: vol. 132
  start-page: 197
  year: 2002
  ident: 10.1016/j.knosys.2022.108694_b84
– volume: 384
  start-page: 172
  year: 2005
  ident: 10.1016/j.knosys.2022.108694_b108
  article-title: Fractal dimension of cerebral cortical surface in schizophrenia and obsessivecompulsive disorder
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2005.04.078
– volume: 540
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b40
  article-title: The chaotic characteristics detection based on multifractal detrended fluctuation analysis of the elderly 12-lead ECG signals
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123234
– start-page: 753
  year: 2019
  ident: 10.1016/j.knosys.2022.108694_b95
  article-title: Hidden markov models
– volume: 136
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b32
  article-title: Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109820
– year: 2012
  ident: 10.1016/j.knosys.2022.108694_b100
– volume: 504
  start-page: 162
  year: 2012
  ident: 10.1016/j.knosys.2022.108694_b61
  article-title: Automatic determination of MS lesion subtypes based on fractal analysis in brain MR images
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2012.54021
– year: 2019
  ident: 10.1016/j.knosys.2022.108694_b74
– start-page: 370
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b57
  article-title: Fractal analysis of retinal vascular morphology in multiple sclerosis
– volume: 118
  start-page: 36
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b35
  article-title: Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2018.02.006
– start-page: 263
  year: 2012
  ident: 10.1016/j.knosys.2022.108694_b6
  article-title: Quantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding
  doi: 10.1016/B978-0-12-388403-9.00011-4
– volume: 275
  start-page: 18
  year: 2016
  ident: 10.1016/j.knosys.2022.108694_b16
  article-title: Markov process models of the dynamics of HIV reservoirs
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2016.02.009
– volume: 174
  start-page: 215
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2022.108694_b11
  article-title: Hidden semi-Markov models
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2009.11.011
– year: 2018
  ident: 10.1016/j.knosys.2022.108694_b3
– volume: 77
  start-page: 3
  year: 2000
  ident: 10.1016/j.knosys.2022.108694_b109
  article-title: Computational complexity of fractal sets
  publication-title: Real Anal. Exchange
– year: 2017
  ident: 10.1016/j.knosys.2022.108694_b73
– start-page: 12
  year: 2017
  ident: 10.1016/j.knosys.2022.108694_b94
  article-title: Wavelet denoising of vehicle platform vibration signal based on threshold neural network
  publication-title: Shock Vib.
– volume: 31
  start-page: 7
  issue: 2
  year: 2000
  ident: 10.1016/j.knosys.2022.108694_b83
  article-title: The generalized multifractional Brownian motion
  publication-title: Stat. Inference Stoch. Process.
  doi: 10.1023/A:1009901714819
– volume: 4412
  start-page: 6404
  year: 2017
  ident: 10.1016/j.knosys.2022.108694_b33
  article-title: Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography
  publication-title: Med. Phys.
  doi: 10.1002/mp.12603
– volume: 545
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b45
  article-title: Fluctuation analysis of electric power loads in Europe: correlation multifractality vs. distribution function multifractality
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123821
– start-page: 27
  year: 2012
  ident: 10.1016/j.knosys.2022.108694_b4
  article-title: Data mining for microbiologists
  doi: 10.1016/B978-0-08-099387-4.00002-8
– year: 2010
  ident: 10.1016/j.knosys.2022.108694_b99
– year: 2009
  ident: 10.1016/j.knosys.2022.108694_b104
– volume: 106
  start-page: 402
  year: 2009
  ident: 10.1016/j.knosys.2022.108694_b19
  article-title: Hidden Markov models and their applications in biological sequence analysis
  publication-title: Curr. Genom.
  doi: 10.2174/138920209789177575
– volume: vol. 9
  year: 1997
  ident: 10.1016/j.knosys.2022.108694_b85
– start-page: 121
  year: 2018
  ident: 10.1016/j.knosys.2022.108694_b55
  article-title: ANN classification of MS subgroups with diffusion limited aggregation
– start-page: 426
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b63
  article-title: Multifractional Gaussian process based on self-similarity modelling for MS subgroups’ clustering with fuzzy C-means
– start-page: 994
  year: 1997
  ident: 10.1016/j.knosys.2022.108694_b2
  article-title: Coupled hidden Markov models for complex action recognition
– volume: 833
  start-page: 278
  year: 2014
  ident: 10.1016/j.knosys.2022.108694_b65
  article-title: Defining the clinical course of multiple sclerosis the 2013 revisions
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000560
– volume: 113
  year: 2020
  ident: 10.1016/j.knosys.2022.108694_b46
  article-title: Do complex’financial models really lead to complex dynamics? Agent-based models and multifractality
  publication-title: J. Econom. Dynam. Control
  doi: 10.1016/j.jedc.2020.103855
– volume: 153
  start-page: 292
  year: 2016
  ident: 10.1016/j.knosys.2022.108694_b67
  article-title: MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00393-2
– volume: 33
  start-page: 1444
  issue: 11
  year: 1983
  ident: 10.1016/j.knosys.2022.108694_b71
  article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale EDSS
  publication-title: Neurology
  doi: 10.1212/WNL.33.11.1444
SSID ssj0002218
Score 2.3904138
Snippet Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108694
SubjectTerms Algorithms
Alternative approaches
Apoptosis
Artificial intelligence
Attributes
Bayesian analysis
Brain
Complex
Complex systems
Complexity
Computation
Computational dynamic complexity analyses
Datasets
Decision making
Differentiation
Dissemination
Forward–Backward algorithm
Fractals
Hidden Markov Model
Integrated approach
Integrative approach
Irregularities
Markov analysis
Markov chains
Mathematical analysis
Mathematical models
Matrices
Matrices (mathematics)
Medical diagnosis
Medical prognosis
Medicine
Multifractal analysis
Multiple sclerosis
Multiple Sclerosis’ subgroups
Neurological disorders
Nonlinear stochastic processes
Physicians
Precision medicine
Prediction models
Predictions
Prognosis
Self-similarity
Singularities
Spatial data
Stochastic models
Stochastic processes
Subgroups
Time
Vector quantization
Viterbi algorithm
Title Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-á-vis the differential prognosis and differentiation of Multiple Sclerosis’ subgroups
URI https://dx.doi.org/10.1016/j.knosys.2022.108694
https://www.proquest.com/docview/2672768152
Volume 246
WOSCitedRecordID wos000795156400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2FFCFeuBQqCgXtA4IHtMheO748VihVgTYglErhydq111JKcEKdRIG_4Sf4AX6ET2FmL7Ypl8IDL5HltWPLczx7djwzh5CHucwHIo04iyRXLAxUyBKZliwslRrAhJfIQmixiXg0SiaT9HWv983VwqxncVUlm026-K-mhn1gbCyd_QdzN38KO2AbjA6_YHb4_SvDH2JTkEoX4czXWuvMdAPQqYMlFkXpghEUjmY4h-k-AcVU-z2ssayWtjTTpJurDfJ0LZhTP1lPa6Y_rfsMNjVpdQorSwy9Y7ZXNcceJ3jFzpDjpcdN_iLc9RkeiUkc9Urq6pK6S5Vfumifvcu601sdZwhsNK2Z71s1m35qI7IzJaqVdqWr91hS0j1Brgqh3f8bYVTDXcAD1spexHgb8GgqcZzza9OfTFjTY7Fnm9gq49STGFYRoZd2vT4Pu37b_-VsYgIbp0_fwZP7iL3dOdfKVEaW-cfm3aNX2cHJ0VE2Hk7GjxYfGOqa4fd_K_JyiWzxeJAmfbK1_3w4edGwBc51DLq5b1feqXMQf77w7-jTOSKh2dH4BrlmlzV038DxJumpaptcd5Ih1D7EbXLl2OZy3CJfDFCpASrVQKUAG9oFKu0ClbZApV2g0hao1ACVIlC_fkaQUgAp7YKUNiDVVzsHUjovqQMpbUD6mDYQvU1ODobjZ4fMqoiwPAjCJUtUIUQqZFCC_ymUlIWvuBhwT3hCxKXMkZUXIlDgrHgYCBEFiivl52nhl6nwgh3Sr-aVukMorBVEDCOBJ5KQSyEKoN9JLJI451FeyF0SOONkuW2xj0ovs8zlUp5mxqQZmjQzJt0lrDlrYVrMXHB87OyeWZps6G8GuL3gzD0Hk8x6LBjHXIwoAR5_98_D98jV9nXcI314g9V9cjlfL6f12QOL6-_gDPcQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+Model+and+multifractal+method-based+predictive+quantization+complexity+models+vis-%C3%A1-vis+the+differential+prognosis+and+differentiation+of+Multiple+Sclerosis%27+subgroups&rft.jtitle=Knowledge-based+systems&rft.au=Karaca%2C+Yeliz&rft.au=Baleanu%2C+Dumitru&rft.au=Karabudak%2C+Rana&rft.date=2022-06-21&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=246&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2022.108694&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon