Automatically improving constraint models in Savile Row
When solving a combinatorial problem using Constraint Programming (CP) or Satisfiability (SAT), modelling and formulation are vital and difficult tasks. Even an expert human may explore many alternatives in modelling a single problem. We make a number of contributions in the automated modelling and...
Uložené v:
| Vydané v: | Artificial intelligence Ročník 251; s. 35 - 61 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.10.2017
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0004-3702, 1872-7921 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | When solving a combinatorial problem using Constraint Programming (CP) or Satisfiability (SAT), modelling and formulation are vital and difficult tasks. Even an expert human may explore many alternatives in modelling a single problem. We make a number of contributions in the automated modelling and reformulation of constraint models. We study a range of automated reformulation techniques, finding combinations of techniques which perform particularly well together. We introduce and describe in detail a new algorithm, X-CSE, to perform Associative–Commutative Common Subexpression Elimination (AC-CSE) in constraint problems, significantly improving existing CSE techniques for associative and commutative operators such as +. We demonstrate that these reformulation techniques can be integrated in a single automated constraint modelling tool, called Savile Row, whose architecture we describe. We use Savile Row as an experimental testbed to evaluate each reformulation on a set of 50 problem classes, with 596 instances in total. Our recommended reformulations are well worthwhile even including overheads, especially on harder instances where solver time dominates. With a SAT solver we observed a geometric mean of 2.15 times speedup compared to a straightforward tailored model without recommended reformulations. Using a CP solver, we obtained a geometric mean of 5.96 times speedup for instances taking over 10 seconds to solve. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0004-3702 1872-7921 |
| DOI: | 10.1016/j.artint.2017.07.001 |