Matrix Non-Structural Model and Its Application in Heat Exchanger Network without Stream Split

Heat integration by a heat exchanger network (HEN) is an important topic in chemical process system synthesis. From the perspective of optimization, the simultaneous synthesis of HEN belongs to a mixed-integer and nonlinear programming problem. Both the stage-wise superstructure (SWS) model and the...

Full description

Saved in:
Bibliographic Details
Published in:Processes Vol. 11; no. 6; p. 1843
Main Authors: Li, Dinghao, Wang, Jingde, Sun, Wei, Zhang, Nan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2023
Subjects:
ISSN:2227-9717, 2227-9717
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat integration by a heat exchanger network (HEN) is an important topic in chemical process system synthesis. From the perspective of optimization, the simultaneous synthesis of HEN belongs to a mixed-integer and nonlinear programming problem. Both the stage-wise superstructure (SWS) model and the chessboard model are the most widely adopted and belong to structural models, in which a framework is assumed for stream matching, and the global optimal solution outside its feasible domain may be defined by the framework. A node-wise non-structural model (NW-NSM) is proposed to find more universal stream matching options, but it requires a mass of structural variables and extra multiple correction strategies. The aim of this paper is to develop a novel matrix non-structural model (M-NSM) for HEN without stream splits from the perspectives of global optimization methods and superstructure models. In the proposed M-NSM, the heat exchanger position order is quantized by matrix elements at each stream, and a HEN structure is initialized by the random generation of matrix elements. An approach for solving HEN problems based on a matrix real-coded genetic algorithm is employed in this model. The results show that M-NSM provides more flexibility to expand the search region for feasible solutions with higher efficiency than previous models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-9717
2227-9717
DOI:10.3390/pr11061843