Matrix Non-Structural Model and Its Application in Heat Exchanger Network without Stream Split
Heat integration by a heat exchanger network (HEN) is an important topic in chemical process system synthesis. From the perspective of optimization, the simultaneous synthesis of HEN belongs to a mixed-integer and nonlinear programming problem. Both the stage-wise superstructure (SWS) model and the...
Saved in:
| Published in: | Processes Vol. 11; no. 6; p. 1843 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.06.2023
|
| Subjects: | |
| ISSN: | 2227-9717, 2227-9717 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Heat integration by a heat exchanger network (HEN) is an important topic in chemical process system synthesis. From the perspective of optimization, the simultaneous synthesis of HEN belongs to a mixed-integer and nonlinear programming problem. Both the stage-wise superstructure (SWS) model and the chessboard model are the most widely adopted and belong to structural models, in which a framework is assumed for stream matching, and the global optimal solution outside its feasible domain may be defined by the framework. A node-wise non-structural model (NW-NSM) is proposed to find more universal stream matching options, but it requires a mass of structural variables and extra multiple correction strategies. The aim of this paper is to develop a novel matrix non-structural model (M-NSM) for HEN without stream splits from the perspectives of global optimization methods and superstructure models. In the proposed M-NSM, the heat exchanger position order is quantized by matrix elements at each stream, and a HEN structure is initialized by the random generation of matrix elements. An approach for solving HEN problems based on a matrix real-coded genetic algorithm is employed in this model. The results show that M-NSM provides more flexibility to expand the search region for feasible solutions with higher efficiency than previous models. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-9717 2227-9717 |
| DOI: | 10.3390/pr11061843 |