Anti-synchronization of a M-Hopfield neural network with generalized hyperbolic tangent activation function

This paper analyzes non-integer Hopfield neural network dynamics introducing the hyperbolic tangent transfer function generalized by the Mittag-Leffler function and the M-truncated derivative with constant and variable order. The novel neural network’s (ANN) behaviors are studied through their dynam...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Vol. 231; no. 10; pp. 1801 - 1814
Main Authors: Viera-Martin, E., Gómez-Aguilar, J. F., Solís-Pérez, J. E., Hernández-Pérez, J. A., Olivares-Peregrino, V. H.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Subjects:
ISSN:1951-6355, 1951-6401
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper analyzes non-integer Hopfield neural network dynamics introducing the hyperbolic tangent transfer function generalized by the Mittag-Leffler function and the M-truncated derivative with constant and variable order. The novel neural network’s (ANN) behaviors are studied through their dynamics depicted in phase portraits and the 0-1 test to determine where the ANN displays strong chaotic behaviors. According to the numerical results, the generalized Hopfield (M-HNTF) reveals weak chaotic dynamics with constant values under 0.99 and regular behaviors lower than 0.8. Considering the variable order, the chaotic behaviors depend on the decay rate of the time-varying function. Due to this, we got systems with weak chaotic dynamics until strong chaotic dynamics. Next, we used two scenarios to anti-synchronize a system master and a slave system. The first considering a dynamic, chaotic system and a regular system, the second: two M-HNTF with variable order. Numerical results illustrate those mentioned above, showing the control aim. Getting new chaotic dynamics from non-integer systems with variable order is essential to develop protocols to offer secure communications, new random number generators, image encrypts schemes, to name a few.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-022-00456-2