Stabbing segments with rectilinear objects
Given a set S of n line segments in the plane, we say that a region R⊆R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for reporting all combinatorially different stabbers for several shapes of stabbers. Specif...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 309; s. 359 - 373 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.09.2017
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given a set S of n line segments in the plane, we say that a region R⊆R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for reporting all combinatorially different stabbers for several shapes of stabbers. Specifically, we consider the case in which the stabber can be described as the intersection of axis-parallel halfplanes (thus the stabbers are halfplanes, strips, quadrants, 3-sided rectangles, or rectangles). The running times are O(n) (for the halfplane case), O(nlog n) (for strips, quadrants, and 3-sided rectangles), and O(n2log n) (for rectangles). |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2017.04.001 |