Stabbing segments with rectilinear objects

Given a set S of n line segments in the plane, we say that a region R⊆R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for reporting all combinatorially different stabbers for several shapes of stabbers. Specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 309; S. 359 - 373
Hauptverfasser: Claverol, Mercè, Garijo, Delia, Korman, Matias, Seara, Carlos, Silveira, Rodrigo I.
Format: Journal Article Verlag
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.09.2017
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a set S of n line segments in the plane, we say that a region R⊆R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for reporting all combinatorially different stabbers for several shapes of stabbers. Specifically, we consider the case in which the stabber can be described as the intersection of axis-parallel halfplanes (thus the stabbers are halfplanes, strips, quadrants, 3-sided rectangles, or rectangles). The running times are O(n) (for the halfplane case), O(nlog n) (for strips, quadrants, and 3-sided rectangles), and O(n2log n) (for rectangles).
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2017.04.001