Stabbing segments with rectilinear objects

Given a set S of n line segments in the plane, we say that a region R⊆R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for reporting all combinatorially different stabbers for several shapes of stabbers. Specif...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 309; s. 359 - 373
Hlavní autori: Claverol, Mercè, Garijo, Delia, Korman, Matias, Seara, Carlos, Silveira, Rodrigo I.
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.09.2017
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Given a set S of n line segments in the plane, we say that a region R⊆R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for reporting all combinatorially different stabbers for several shapes of stabbers. Specifically, we consider the case in which the stabber can be described as the intersection of axis-parallel halfplanes (thus the stabbers are halfplanes, strips, quadrants, 3-sided rectangles, or rectangles). The running times are O(n) (for the halfplane case), O(nlog n) (for strips, quadrants, and 3-sided rectangles), and O(n2log n) (for rectangles).
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2017.04.001