Resource management of opportunistic digital array radar antenna aperture for pattern synthesis

Due to the complex time-varying environments and the unknown target information, the uncertainty of target information is introduced into the echo signal. Owing to the uncertainty of target information, the number and operating modes of antenna array elements allocated for pattern synthesis are unce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET radar, sonar & navigation Jg. 11; H. 5; S. 829 - 837
Hauptverfasser: Han, Qinghua, Pan, Minghai, Gong, Shufeng, Long, Weijun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 01.05.2017
Schlagworte:
ISSN:1751-8784, 1751-8792
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the complex time-varying environments and the unknown target information, the uncertainty of target information is introduced into the echo signal. Owing to the uncertainty of target information, the number and operating modes of antenna array elements allocated for pattern synthesis are uncertain. Hence to reduce the influence of uncertainty of target information and save the antenna array elements, in the light of the uncertainty of the number and the distribution of the array elements in working state, a novel fuzzy random chance-constrained programming model of opportunistic digital array radar antenna aperture resource management is proposed. Moreover, this model can determine the information of radar target from the echo signal by reasonable resource management and allocation under the condition that the specified confidence levels are satisfied. Meanwhile, for solving the multi-object model, the fuzzy random simulation is integrated into fast and elitist non-dominated sorting genetic algorithm (NSGA_II) to compose a hybrid intelligent optimisation algorithm. Finally, two simulations are carried out to verify the validity of this model.
ISSN:1751-8784
1751-8792
DOI:10.1049/iet-rsn.2016.0440